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We analyze the gapped phase of the Kitaev honeycomb model perturbatively in the isolated-dimer limit. Our
analysis is based on the continuous unitary transformations method, which allows one to compute the spectrum
as well as matrix elements of operators between eigenstates at high order. The starting point of our study
consists of an exact mapping of the original honeycomb spin system onto a square-lattice model involving an
effective spin and a hard-core boson. We then derive the low-energy effective Hamiltonian up to order 10
which is found to describe an interacting-anyon system, contrary to the order 4 result which predicts a free
theory. These results give the ground-state energy in any vortex sector and thus also the vortex gap, which is
relevant for experiments. Furthermore, we show that the elementary excitations are emerging free fermions
composed of a hard-core boson with an attached spin- and phase-operator string. We also focus on observables
and compute, in particular, the spin-spin correlation functions. We show that they admit a multiplaquette
expansion that we derive up to order 6. Finally, we study the creation and manipulation of anyons with local
operators, show that they also create fermions, and discuss the relevance of our findings for experiments in
optical lattices.
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I. INTRODUCTION

Elementary particles can be classified in two categories
according to the value of their spin. Half-integer spin par-
ticles obey Fermi-Dirac statistics and are called fermions,
whereas integer-spin particles obey Bose-Einstein statistics
and are known as bosons. However, some quantum objects
may obey other �fractional� statistics describing nontrivial
braiding as initially suggested by Leinaas and Myrheim1

more than 30 years ago and by Wilczek2,3 in the 1980s. De-
spite numerous theoretical works, these so-called anyons are
still waiting for a direct observation although recent experi-
mental proposals are very promising �see Ref. 4�.

In the last years, anyons have drawn much attention be-
cause of their interest for topological quantum computation.5

In this perspective, several models have been proposed,
among which the celebrated toric code,6 which is a spin-1/2
system whose elementary excitations behave as semions.
However, the experimental realization of this system is rather
tricky since it involves four-spin interactions. Here, we shall
focus on another system originally proposed by Kitaev,7

which only involves two-spin interactions. This model is
very rich since it contains Abelian and non-Abelian anyonic
as well as fermionic excitations. Thus, it has been the subject
of many recent studies concerning the spectrum,8–16 the cor-
relation functions and the entanglement,16–20 or the quench
dynamics.21,22 Let us also mention several extensions,23–25

among which the analysis of time-reversal symmetry-
breaking terms,26,27 which may give rise to a chiral spin liq-
uid.

Furthermore, this model is susceptible to be realized in
various experimental systems such as polar molecules, ultra-
cold atoms,28–31 or Josephson junctions.32 It thus constitutes
an appealing candidate for the observation of anyons. Nev-

ertheless, the presence of fermions in the spectrum may spoil
the detection process; a point completely missed in a recent
proposal �see Ref. 33 for explanation and Ref. 16 for details�.

The goal of the present paper is to investigate the gapped
phase of the Kitaev honeycomb model.7 Indeed, in his re-
markable seminal paper, Kitaev6,7 mainly focused on the spe-
cial subspace of the Hilbert space to which the ground state
belongs to and the low-energy spectrum of other subspaces
has only been discussed lately.13 Our aim is to bridge this
gap by providing a high-order perturbative analysis, in the
isolated-dimer limit, of the spectrum as well as some inter-
esting results about the creation and the manipulation of
anyons, which is of relevance for experiments.30,31 Part of
our results have already been given in two short papers,13,16

and the present paper may be considered as an extended and
detailed version of these works. However many other results
are presented here, among which the interplay between fer-
mions and anyons under string operations discussed in Sec.
IX.

This paper is organized as follows. In Sec. II, we intro-
duce the model as well as its main properties. In particular,
we discuss the importance of the boundary conditions and
insist on the role played by conserved quantities15 and the
constraints resulting from them. In Sec. III, we show how to
map the Kitaev model6,7 involving spins on the honeycomb
lattice onto an effective spin and hard-core boson on a square
lattice. This mapping is the starting point of the perturbation
theory presented in this work. In Sec. IV, we explain how to
diagonalize the Hamiltonian order by order using the pertur-
bative continuous unitary transformation �PCUT� method.
The study of the low-energy �zero-quasiparticle �0-QP�� sec-
tor is the subject of Sec. V, a large part of which is devoted
to a pictorial �and hopefully pedagogical� analysis and con-
struction of the eigenstates of the toric code model, which
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naturally emerges from this problem. There, we give the per-
turbative expansion form of the ground-state energy for any
vortex configuration. The effective low-energy theory is
found to be described by interacting anyons contrary to the
lowest-order result which predicts free anyons.7 Section VI
focuses on the study of the one-quasiparticle �1-QP� sub-
space, where the physics is shown to be that of a particle
hopping in a magnetic field with zero or half a flux quantum
per elementary plaquette. The demonstration of the fermionic
nature �known from exact solutions� of the quasiparticles is
briefly sketched in Sec. VII. In Sec. VIII, we provide some
checks of our results by analyzing simple vortex configura-
tions, which allow for an exact solution. The spin-spin cor-
relation functions and the manipulation of anyons are tackled
in Sec. IX, which is devoted to the renormalization of ob-
servables. Finally, we discuss several issues and give some
perspectives. Technical details as well as all relevant coeffi-
cients involved in the perturbative expansions are gathered in
Appendixes A–F.

In what follows, we tried to be as pedagogical as possible
and always favored simple demonstrations on concrete ex-
amples rather than lengthy proofs for general situations. We
hope that it will help the reader to understand the richness of
this model.

II. MODEL

A. Hamiltonian and boundary conditions

The model considered in this work is a spin-1/2 system
proposed by Kitaev7 in which spins are located at the verti-
ces of a honeycomb lattice. Since the honeycomb lattice is
topologically equivalent to the brick-wall lattice, we shall
always represent it as shown in Fig. 1�a�. In this lattice, one
distinguishes three types of links �x, y, and z� to which one
associates three different couplings and interactions. The
Hamiltonian of the system is

H = − �
�=x,y,z

�
� links

J��i
�� j

�, �1�

where �i
� are the usual Pauli matrices at site i. In the follow-

ing we assume, without loss of generality,7 that J��0 for all
� and Jz�Jx ,Jy.

We will either work with an infinite system and open
boundary conditions �a plane� or with a finite �or infinite�
system and periodic boundary conditions �PBCs� �a torus�. In
the latter case and for reasons that will become clearer in the
following �in particular, see Sec. V B�, we shall restrict our-
selves to the PBCs depicted in Fig. 2. The number of sites Ns
is Ns=2�2p�2=8p2, with p�N �p=1 in Fig. 2�a��. Let us
anticipate what follows and mention that these boundary
conditions are such that the lattice of z dimers �Fig. 1�b�� can
be bicolored as shown in Fig. 2�b�.

B. Conserved quantities

A remarkable property of Hamiltonian �1� is that its el-
ementary operators Kij =�i

�� j
� commute with plaquette op-

erators Wp so that �H ,Wp�=0. For the plaquette p shown in
Fig. 1�a�, such an operator is defined as

Wp = K12K23K34K45K56K61 = �1
x�2

y�3
z�4

x�5
y�6

z . �2�

Let us mention that in the expression of Wp in terms of the
K’s, one could have started at any site instead of site 1 and/or
one could have taken the product of K’s counterclockwise
instead of clockwise. Furthermore, the expression in terms of
�’s could also be written as Wp=�i�i

out�i�, where i runs over
the set of six spins around the plaquette p and where the
notation out�i� means the “outgoing” direction at site i, with
respect to the plaquette’s contour. An illustration of the Wp
operator is given in Fig. 3.

Since Wp
2 = I, the eigenvalues of the plaquette operators

are wp= �1. Note that �Wp ,Wp��=0, as can be shown from
the usual Pauli matrix algebra. As a consequence, H and the
Wp’s can be diagonalized simultaneously. Following
Kitaev,6,7 we will call a vortex sector a subspace of the Hil-
bert space with a given map of the wp’s. By definition a
vortex is a plaquette for which wp=−1 so that, for example,
the vortex-free sector is defined by wp= +1 for all p’s.

In fact, all loop operators made of “outgoing spins” �see
Figs. 4 and 5� are conserved and all commute with each
other, which can be verified in the same way as for the Wp’s.
However, not all of them can be set independently to �1.
Some relations among them arise from the following fact

p

2 3 4

1 6 5

(a) (b)
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z
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FIG. 1. �Color online� Mapping of the honeycomb �brick-wall�
lattice onto a square lattice with unit basis vectors n1 and n2. Each
z dimer with four-spin configurations is replaced by a single site
with 4 degrees of freedom: the occupation number of hard-core
boson �0 or 1� and the effective spin �⇑, or ⇓�, which is chosen as
the spin of the black site of the considered z dimer. The numbering
of the sites of a plaquette p is shown in both cases.

n2 n1

2p n12p n2

(b)(a)

FIG. 2. �Color online� The periodic boundary conditions used in
this work �a� on the original brick-wall lattice and �b� on the effec-
tive square lattice of z dimers �see Fig. 1�. In the figure p=1. In
both cases, the finite-size system is put on a torus obtained by
identifying the opposite sides of the dashed �magenta� square. For
clarity, the site at the point chosen as the origin has been depicted
bigger. Half the square plaquettes in �b� have been colored in cyan
�gray� to show that the periodic boundary conditions allow us to
bicolor the lattice.
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�which can be checked by studying all possible cases�: the
product of Wp and a nearby loop operator L gives a new loop
operator L�=WpL, as illustrated on a particular example in
Fig. 4.

As an illustration of other relations involving loop opera-
tors around the torus, with the loops of Fig. 5, one has

La = �
n=1

6

Wan
, �3�

Lb� = Lb�
n=1

8

Wbn
, �4�

Ld = − LaLbLc, �5�

where we have denoted, for example, La=�i�Ca
�i

out�i�. The
minus sign in the last equation above comes from the cross-
ing of Lb and Lc. In the three expressions above, the product
of plaquette operators could also have been taken over the
complementary set of plaquettes. Indeed, on the torus the
relations among loop operators yield the following con-
straint:

�
all p�s

Wp = I , �6�

showing in particular that the number of vortices has to be
even in a system with PBC.

From examples shown in Fig. 5, one can deduce that all
Wp’s �except one, because of Eq. �6�� and Lb and Lc can be
set independently to �1, which then imposes all other con-
served quantities.

C. Some results from the exact solution

The above discussed local conserved quantities are not
sufficient to fully diagonalize the Hamiltonian. Indeed, if Ns
is the number of sites, then there is a total of N=Ns /2
plaquettes but only N−1-independent ones. With the two
cycles around the torus, this gives N+1-independent con-
served quantities, which are obviously smaller than Ns.

However, H has a crucial property: it can be transformed
into a free Majorana fermion Hamiltonian and is, thus, ex-
actly solvable. Let us also mention that another solution
based on the Jordan-Wigner transformation maps the spin
Hamiltonian H onto a spinless fermions system with p-wave
pairing.9,11,12

As shown by Kitaev,7 the ground state of H lies in the
vortex-free sector and the phase diagram contains, in this
sector, two phases: a gapped phase for Jz�Jx+Jy and a gap-
less phase for Jz�Jx+Jy. In the gapped phase the low-energy
excitations are Abelian anyons �semions�, whereas in the
gapless phase, the low-energy excitations are fermionic. The
gapless phase acquires a gap in the presence of a magnetic
field and then contains gapped non-Abelian anyon excita-
tions. The phase diagram has also been investigated in other
vortex configurations such as the vortex-full sector and simi-
lar phases have been obtained. More precisely, one has a
gapped phase for Jz

2�Jx
2+Jy

2 and a gapless phase in the op-
posite case.14

Our goal here is to determine the low-energy spectrum for
any vortex configuration. Of course, one may use the fermi-
onic Hamiltonian mentioned above, but it can only be ex-
actly diagonalized for translation-invariant configuration.
Here, we follow an alternative route by focusing on the
isolated-dimer limit Jz�Jx ,Jy.

σy

σx

σz

p

FIG. 3. �Color online� Illustration of the conserved plaquette
quantity Wp. The thick yellow �lightest gray� line delimitates the
plaquette p. The thick red �gray�, green �light gray�, or blue �dark
gray� segments represent the Pauli matrices �i

out�i�.

σy

σx

σz

(a) (b)

C C�p p

FIG. 4. �Color online� Illustration of the relation L�=WpL, with
L=�i�C�i

out�i�, Wp already shown in Fig. 3 and L�=�i�C��i
out�i�.

The thick yellow �lightest gray� line in �a� represents the contour C
and the one in �b� represents C�. As in Fig. 3, the thick red �gray�,
green �light gray�, or blue �dark gray� segments represent the Pauli
matrices �i

out�i�.
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FIG. 5. �Color online� Examples of conserved loop operators
L=�i�C�i

out�i� in a finite-size system with PBC.
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III. MAPPING ONTO AN EFFECTIVE-SPIN BOSON
PROBLEM

A. Mapping of the Hamiltonian

The very first step of our analysis consists of mapping the
four possible states of the two spins of a z dimer onto those
of an effective spin and a hard-core boson. More precisely,
denoting �↑ � ��↓ �� the eigenstate of �z with eigenvalue +1
�−1�, an isolated z dimer can be in one of the two low-energy
states 	�↑↑� , �↓↓�
 with energy −Jz or in one of the two high-
energy states 	�↑↓� , �↓↑�
 with energy +Jz. Keeping in mind
that our aim is to perform a perturbation theory in the limit
Jz�Jx ,Jy, it is natural to interpret the change from a ferro-
magnetic to an antiferromagnetic configuration as the cre-
ation of a particle with an energy cost 2Jz. By construction,
such a particle is a hard-core boson. The remaining degree of
freedom can be described by a spin 1/2, indicating which of
the two configurations is realized. There are many possible
parametrizations but here we choose the following:

�↑↑� = �⇑0�, �↓↓� = �⇓0�, �↑↓� = �⇑1�, �↓↑� = �⇓1� .

�7�

The left �right� spin is the one of the black �white� site of the
dimer ��↑↓�= �↑�↓��, etc.�. Double arrows represent the state
of the effective spin, which is the same here as the state of
the left �black� spin.

Within such a mapping, effective spins and hard-core
bosons live on the effective square lattice of z dimers �see
Fig. 1�. This lattice is shown again in Fig. 2�b� together with
the PBC, which are such that it can be bicolored. In what
follows, the sites of the effective lattice will be denoted with
bold letters, such as i.

Let us now write Hamiltonian �1� in this language. There-
fore, we first translate the action of the spin operators in the
effective-spin boson �ESB� formalism. It is easy to check
that one has

�i,�
x = � i

x�bi
† + bi�, �i,�

x = bi
† + bi,

�i,�
y = � i

y�bi
† + bi�, �i,�

y = i� i
z�bi

† − bi� ,

�i,�
z = � i

z, �i,�
z = � i

z�1 − 2bi
†bi� . �8�

The operators � i
� ��=x ,y ,z� are the Pauli matrices acting on

the effective spin at site i, while bi and bi
† are hard-core

bosonic annihilation and creation operators, satisfying the
usual on-site anticommutation relation 	bi ,bi

†
= I �and opera-
tors on different sites commute�. Setting once for all
Jz=1 /2 so that creating a boson costs an energy 1 in the
isolated-dimer limit, Hamiltonian �1� reads

H = −
N

2
+ Q + T0 + T+2 + T−2, �9�

where N is the number of z dimers �or, equivalently, of
square plaquettes�, and

Q = �
i

bi
†bi, �10�

T0 = − �
i

�Jxt i
i+n1 + Jyt i

i+n2 + H.c.� , �11�

T+2 = − �
i

�Jxvi
i+n1 + Jyvi

i+n2� = �T−2�†. �12�

These operators are built from local hopping and pair-
creation operators,

t i
i+n1 = bi+n1

† bi� i+n1

x , t i
i+n2 = − ibi+n2

† bi� i+n2

y � i
z,

vi
i+n1 = bi+n1

† bi
†� i+n1

x , vi
i+n2 = ibi+n2

† bi
†� i+n2

y � i
z. �13�

We emphasize that the mapping �Eq. �8�� explicitly breaks
the symmetry between white and black sites of the original
brick-wall lattice. This is responsible for the apparent break-
ing of symmetry between the x /n1 and y /n2 directions in Eq.
�13�. However, for all the physically observable results, this
symmetry remains intact �see, for example, the series expan-
sion of eigenenergies in Appendix C�. Note however that the
n1+n2 and n1−n2 directions are not equivalent, as can be
seen from the underlying brick-wall lattice.

B. Conserved quantities

Let us now rephrase the conserved operators discussed in
Sec. II B in the effective language. Using the notations de-
picted in Fig. 1�b�, as well as the mapping �Eq. �8��, the
plaquette operators transform into

Wp = �− 1�bL
†bL+bD

† bD� L
y � U

z � R
y � D

z . �14�

Note that �−1�bi
†bi =1−2bi

†bi. In the same vein, for the cycles
around the torus shown in Figs. 5�b� and 5�c�, which are
reproduced for the effective lattice in Figs. 6�b� and 6�c�, one

has Lb=�i�Cb
�−�−1�bi

†bi� i
x�=�i�Cb

��−1�bi
†bi� i

x� �since there is

x

x

−x

−x

−x

−x

x

x

z z z

z z

yy

z

x

x

x

x
1

zzz

z

z z z z

Ca

Cc

Cb

Cd

Cd

(a) (b)

(c) (d)

FIG. 6. �Color online� On the four figures, the thick yellow
�lightest gray� line represents the contours C. The operators 	i
which are such that the loop operators read L=�i�C	i are indicated
in the figures. In the present case, they can take the following values
x=� x, x̄= �−1�b†b� x �and the same for y and z�, and −x̄=−�
−1�b†b� x. These figures are the same as the ones of Fig. 5 but on the
effective lattice.
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an even number of sites on the contour with the PBC chosen
here�, as well as Lc=�i�Cc

� i
x. The expression for Ld �see Fig.

5�d��, namely, Ld=�i�Cd
	i, is a bit more complicated, but it

should be clear from Fig. 6�d� what the 	i’s are. Finally, for
the contour shown in Fig. 6�a� �which is in correspondence
with Fig. 5�a��, one has �p�Ca

Wp=�i�Ca
	i=La with the 	i’s

indicated in the figure and with p�Ca meaning the
plaquettes p enclosed in the contour Ca. With these notations,
one can easily check that Eq. �5� still holds.

The elementary hopping and pair-creation operators,
namely, t i

j and vi
j with i and j nearest neighbors, have a very

remarkable property: they all commute with the Wp’s as well
as with any other loop operator,

�t i
j,Wp� = �vi

j,Wp� = �t i
j,L� = �vi

j,L� = 0. �15�

The original spin problem on the honeycomb lattice is,
thus, mapped onto a quadratic hard-core boson problem on
an effective square lattice, with conserved plaquette and loop
operators. Let us underline that this mapping is exact and just
provides an alternative description of the spin problem. The
resulting Hamiltonian �9� remains difficult to diagonalize
�except, of course, if one remembers that the model can be
fermionized� since �i� bosons are hard core which prevents
the use of a Bogoliubov transformation and �ii� bosonic and
spin degrees of freedom are correlated. The conserved
plaquette operators will of course be useful in simplifying
and solving the problem as recently underlined in Ref. 15.

IV. PERTURBATION THEORY IN THE GAPPED
PHASE

A. Effective Hamiltonian from PCUTs

The starting point of the present perturbation theory is the
isolated-dimer limit, namely, Jx=Jy =0. In this limit, the
spectrum is made of equidistant and degenerate levels sepa-
rated by an energy gap 
=2Jz=1. To compute the perturba-
tive spectrum, there are of course several methods among
which Green’s function formalism initially used by Kitaev.7

However, if this approach is efficient to obtain the first non-
trivial �nonconstant� correction, it becomes tricky to imple-
ment at higher orders.

Here, following Ref. 13, we use an alternative approach
based on continuous unitary transformations �CUTs� con-
jointly proposed by Wegner34 and Głazek and Wilson.35,36

We refer the interested reader to Ref. 37 for a recent peda-
gogical introduction. Its perturbative version denoted PCUTs
is especially well suited to the problem at hand. This tech-
nique is detailed in several works.38,39 Let us simply mention
that the CUT method requires the choice of a generator that
drives the flow of the operators. All the results given here
have been obtained with the so-called quasiparticle number-
conserving generator first proposed by Mielke40 for finite
matrices and generalized to many-body systems by Knetter
and Uhrig.39

The latter have computed the perturbative expansion for
any Hamiltonian of the form

H = Q + T−2 + T−1 + T0 + T+1 + T+2, �16�

provided two hypothesis are satisfied: �i� the unperturbed
Hamiltonian Q has an equidistant spectrum bounded from
below; �ii� the perturbing Hamiltonian �n=−2

+2 Tn is such that
�Q ,Tn�=nTn.

Clearly, Hamiltonian �9� meets these two criteria �up to a
constant term� noting that in the present case, one has
T�1=0. Here, we have included the “small” parameters,
namely Jx and Jy, in the definition of the Tn operators, which
is not the convention usually adopted in the CUT commu-
nity.

The CUT method together with the quasiparticle number-
conserving generator unitarily transform Hamiltonian �16�
into an effective Hamiltonian Heff=U†HU commuting with
Q, U being a unitary operator. We give the first terms of the
expansion up to order 4 in Appendix A. As can be seen in
Table I, the number of terms appearing in the perturbative
expansion quickly increases with the order. For instance, at
order 2, the effective Hamiltonian reads in our case

Heff = −
N

2
+ Q + T0 −

1

2
T−2T+2 +

1

2
T+2T−2, �17�

whereas at order 10, there are more than 104 operators to
consider.

Writing Heff this way is only the very first part of the job
since one next has to �i� determine its action in each sub-
space of a given QP number q and �ii� diagonalize Heff in
each of these subspaces. This is the object of Secs. V–VII:
we first study the lowest-energy states �q=0 QP�, which is
the main contribution of our work; then we turn to the q=1
QP states and recover the high-energy gap from the QP dis-
persion; we end by q�2 QP states, whose properties deter-
mine the statistics of the QPs, and we will see that the QPs
behave as fermions, which are, furthermore, noninteracting.
This fact is at the origin of a tremendous simplification of the
effective Hamiltonian. Indeed, we found that Heff can be
written, at all orders and in the thermodynamical limit, as

Heff = E0 + �Q − �
	p1,. . .,pn


Cp1,. . .,pn
Wp1

¯ Wpn

− �
	j1,. . .,jn


Dj1,. . .,jn
Sj1,. . .,jn

bjn
† bj1

. �18�

We shall discuss each term in detail in Secs. V–VII, but let
us mention that E0, �, C’s, and D’s are coefficients whose
series expansions are computed. The S operators are strings

of spin operators � j
� and of phase factors �−1�bj

†bj on the
cluster 	j1 , . . . , jn
. This very special form of multiparticle

terms �remember �−1�bj
†bj =1−2bj

†bj�, leading to phase fac-
tors and spin strings only, is responsible for the emergence of
fermions in the model.

For a finite-size system with PBC, new terms appear in
the effective Hamiltonian. They involve loop operators
around the torus and appear at a minimal order being the
linear size 2p of the lattice. Such loop operators are associ-
ated to contours as the ones shown in Figs. 5 and 6, namely,
Lb, Lc, and Lb� for the contours Cb, Cc, and Cb�. The presence
of such loop operators in the effective Hamiltonian shows
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that the eigenstates of the Hamiltonian are also eigenstates of
these loop operators. Their effect is to lift the degeneracies
between states �which for each energy is at least four in the
thermodynamical limit since some of the excitations are
Abelian semions and the genus of a torus is 1 �see Ref. 5��.
We shall not dive into the details of such finite-size correc-
tions since our approach allows us to directly tackle with the
most interesting thermodynamical limit. However, let us
make a remark about a numerical check of this statement for
small system sizes. For a torus whose linear size is strictly
smaller than 4, the loop operator terms around the torus
dominate the expansion over the Wp’s, and for a size of 4
both types of terms start contributing at the same order. One
should, thus, not be surprised to find a ground state for
p=1, which is not in the vortex-free sector.15

B. Counting of states

Before we turn to a detailed analysis of each QP subspace,
let us show that we do not miss any state using simple count-
ing arguments. We have already seen in Sec. II that one has
N+2 conserved Z2 quantities �two loop operators and N
plaquette operators�, with the constraint �pWp= I. There is, in
fact, one more relation between the Wp’s, involving the num-
ber of bosons, which reads

�
p�white

Wp = �− 1��ibi
†bi = �− 1�Q = �

p�cyan�gray�
Wp, �19�

showing that the parity of the number of vortices living on
white plaquettes �see Fig. 2� has to be the same as the parity
of the number of bosons. The last equality simply comes
from the previously mentioned constraint �Eq. �6��. The first
equality can be checked using expression �14� of the Wp’s.
Indeed, for a site i having a white plaquette on its left and
another one on its right, the product of the two associated

Wp’s will give � i
y � �−1�bi

†bi� i
y = �−1�bi

†bi. In the same way, for
a site i having a white plaquette above it and another one
under it, the product of the two associated Wp’s will give

� i
z� �−1�bi

†bi� i
z= �−1�bi

†bi. Let us note that Eq. �19� has a
meaning in the two bases we are working in, the initial one
and the unitarily transformed one. Indeed, in the initial basis,
the Hamiltonian H commutes with the parity operator
�−1�Q; in the rotated basis, Heff commutes with Q.

We, thus, see that in a subspace with a given number of
QPs, there are N-independent conserved Z2 quantities. Thus,
N being the number of effective spins �i, there is no remain-
ing effective-spin degree of freedom once the Z2 quantities
are chosen. As a conclusion, the q-QP subspace has dimen-
sion dq=2N� N

q �, with the usual notation for binomial coeffi-
cients. This shows that we miss no state since

�
q=0

N

dq = 2N�
q=0

N �N

q
� = 22N = 2Ns, �20�

where Ns is the total number of spins in the brick-wall lattice.
This discussion furthermore sheds light on the fact that in

order to compute eigenenergies, a perturbative expansion of
the Kitaev model6,7 �as opposed to exact numerics� is really
of interest only in the 0-QP subspace. Indeed, we have just

seen that there are N-independent Z2 conserved quantities. It
is, thus, clear that as soon as we will have written down the
effective Hamiltonian in the 0-QP subspace, the Hamiltonian
will already be diagonal, whatever the vortex configuration,
although writing down the eigenstates of the Z2 quantities in
the basis of effective-spin operators still has to be done.
However, in the 1-QP subspace, one will have to diagonalize
an N�N matrix �numerically in the case of a nonperiodic
vortex configuration�, which is identical to what one has to
do when solving the problem exactly as Kitaev did.6,7 For
q�2, the perturbative expansion looks even more compli-
cated than the exact solution, but this is an artifact since we
recover free fermions.

V. EFFECTIVE HAMILTONIAN IN THE 0-QP SUBSPACE

A. Effective Hamiltonian and eigenenergies

In the 0-QP sector and in the thermodynamical limit, the
effective Hamiltonian �18� simplifies and reads

Heff�q=0 = E0 − �
	p1,. . .,pn


Cp1,. . .,pn
Wp1

¯ Wpn
, �21�

where 	p1 , . . . , pn
 denotes a set of n plaquettes and the Wp’s
are the conserved plaquette operators introduced in Sec. II.
Note than when restricted to the 0-QP sector they simplify to
Wp �q=0=� L

y � U
z � R

y � D
z �see Eq. �14��.

As mentioned at the end of Sec. IV B, obtaining eigenen-
ergies only requires a minimal amount of work, namely, re-
placing each Wp by numbers wp= �1 and doing the same
with loop operators, without forgetting about the constraints
among these quantities. The perturbative expansions of the
coefficients E0 and Cp1,. . .,pn

are given in Appendix C. Let us
note that 	p1 , . . . , pn
 does not need to be a linked cluster of
plaquettes �as seen for Cp,p+2n1

that is nonvanishing at order
10� and that translational invariance of the Hamiltonian im-
plies that the Cp1,. . .,pn

coefficients only depend on n−1 rela-
tive positions of the plaquettes.

The lowest nontrivial order involving the Wp’s �order 4�
has been derived by Kitaev7 �Cp=Jx

2Jy
2 /2� and led him to

identify the effective low-energy theory with the toric code.6

One of the main results of our work is to show that at order
6 and beyond, one obtains a multiplaquette expansion in the
effective low-energy Hamiltonian. In other words vortices
interact, though they remain static as they have to since the
Wp’s are conserved. The interaction energies between vorti-
ces are not directly the C coefficients. One should write wp
=1−2np, where np is the number of vortices at plaquette p �0
or 1�, then look at coefficients in the expansion in terms of
the np’s. The results of such an analysis for two-vortex inter-
action energies in the case Jx=Jy =J are illustrated in Fig. 7,
which shows that the interaction �i� lowers the energy and is
therefore attractive, �ii� is anisotropic even for Jx=Jy =J,
which is clear from the structure of the underlying brick-wall
lattice, and �iii� decreases with the distance d between vorti-
ces as expected in a gapped system. Note that for a finite-size
system with PBC, the two-vortex configurations with a cen-
tral vortex and another vortex at one of 1, 5, 6, and 7 sites
�see Fig. 7� are forbidden since they violate constraint �19�.
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A one-vortex configuration is also forbidden since it violates
constraint �6�. These configurations would be allowed in an
infinite system or in a finite system with open boundary con-
ditions.

A most remarkable point which emerges from the analysis
of Heff �0 is that its eigenstates are those of the Wp’s. They are,
thus, the same at any order ��4� and are those of the toric
code,6 although their eigenenergy changes with the perturba-
tion order �we emphasize that we are talking about eigen-
states of Heff �0 and not of the original Hamiltonian H�. We
graphically sketch the construction of these eigenstates in
Sec. V B, which will also prove to be useful for the �q�1�
QP sectors, and show explicitly that they obey anyonic, more
precisely semionic, statistics. Our discussion of the toric
code focuses on peculiarities related to our way of studying
the problem that is not restricted to the 0-QP subspace. For
more details about the toric code model, we refer the inter-
ested reader to Refs. 5–7.

B. Toric code in a nutshell

1. Mapping to the toric code

As we have seen in Secs. II–IV, the eigenstates of the
effective Hamiltonian in the 0-QP subspace are the eigen-
states of the Wp’s and of the L’s. We recall that in this sub-
space, the plaquette operators read Wp �q=0=� L

y � U
z � R

y � D
z �see

Eq. �14� and Fig. 1�b��. A similar simplification occurs for

the L’s. As mentioned by Kitaev7 �for the Hamiltonian at
order 4�, the effective Hamiltonian could be studied directly,
but it is much easier to visualize the eigenstates by perform-
ing some spin rotations and bring the Hamiltonian to the one
of the toric code �generalized by multivortex terms�. Thanks
to the special PBC we have chosen, the lattice sites can be
bicolored in black and white as illustrated in Fig. 8. Then,
one performs a different rotation on the two kinds of sites,

� �
x = sy, � �

y = sz, � �
z = sx,

� �

x = − sy, � �

y = sx, � �

z = sz. �22�

This way, a cyan �gray� �respectively, white� plaquette
such as m �respectively, e� in Fig. 8�a� transforms into a

plaquette �star� term Bm= �−1�bL
†bL+bD

† bDsL
z sU

z sR
z sD

z �respec-

tively, Ae= �−1�bL
†bL+bD

† bDsL
x sU

x sR
x sD

x �, as shown with thick �red�
lines in Fig. 8�b�. We have kept track of the phases involving
boson numbers because our construction will be needed for
�q�1� subspaces, but it is clear that they can be dropped in
the 0-QP subspace. Let us mention that the distinction be-
tween plaquette and star terms is purely conventional. The
letters m and e refer to the magnetic and electric vocabulary
also used by Kitaev,7 although we emphasize there is abso-
lutely no difference between an A and a B operator, which
are both disguised W operators. Up to an additive constant
term, the effective Hamiltonian in the 0-QP subspace, and at
order 4, finally reads �with Jeff=Jx

2Jy
2 /2�

Heff�q=0 = − Jeff��
e

Ae + �
m

Bm� . �23�

We work with this lowest �nontrivial� order Hamiltonian be-
cause the eigenstates of Heff �q=0 remain the same whatever
the order in perturbation. One should simply remember that
the eigenstates of H also have to be eigenstates of L opera-
tors. If the PBC is not of the type we use �see Fig. 2�, the
sites can usually not be bicolored and the rotations �Eq. �22��
cannot be performed, which makes the construction much
more complicated, and we shall refer the interested readers to
Ref. 41.

2. Construction of the ground state(s)

As a warm up, let us construct a ground state of Heff �0,
i.e., an eigenstate of all Bm and Ae operators with eigenvalue
1 �there are actually four of these�. An eigenstate of all Bm’s
is, for example, the “reference” state �⇑ � where all spins s
point in the +z direction, such that for all i one has

FIG. 7. �Color online� Two-anyon configurations �gray central
plaquette and one of the numbered plaquettes� on a vortex-free
background. 
E1v �
E2v� is the energy cost �at order 10� for adding
one vortex �two vortices� to the vortex-free state. 
E1v reads

E1v=J4+8J6+75J8+784J10. For simplicity, we have set here Jx

=Jy =J but the results, in the general case, are easily obtained from
the coefficients given in Appendix C.

e

m

(a)

τ → s

m

e

(b)

FIG. 8. �Color online� Illustration of the two different points of
view one can have of a bicolored lattice: sites are at vertices in �a�
and on the bonds in �b�. The plaquette m in �a� remains a plaquette
in �b�, while the plaquette operator e transforms into a star operator.
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si
z�⇑ �= �⇑ �. This state is not an eigenstate of the Ae operators

yet, but a simple projection yields the desired state,

2N/4−1/2�
e
� I + Ae

2
�� ⇑ � � �0�b, �24�

whose normalization follows from the number N /2 of e’s
and the property �eAe= I �see Eq. �19��. The state �0�b indi-
cates that there is no quasiparticle, i.e., no hard-core boson.
A graphical interpretation can be given of state �24�: it is an
equal-weight superposition of multiloop configurations pro-
duced by the Ae operators, as the ones shown in Fig. 9.

One next has to get an eigenstate of two independent loop
operators, which we choose to be Lb and Lc �see Figs. 5 and
6� and, which, from now on, will be denoted Lx and Ly, with
eigenvalues lx and ly. The expressions of these operators in
the s-spin language are given in Fig. 10.

Note that in the 0-QP subspace, one could also have used
other conserved loop operators, which are products of sx or
of sz on the contours defining Lx and Ly. Such operators
resemble more the ones used by Kitaev,6 but they are con-
served only in the 0-QP subspace �in contrast to Lx and Ly�,
and so will not prove to be very useful in the following.

As can be seen in Fig. 10, Lx and Ly perform spin flips,
with respect to �⇑ � on their associated contours. The four
ground states of Eq. �23� are then obtained with another pro-
jection and proper normalization,

�	wp = 1
,lx,ly�0 = 2N/4+1/2� I + lxLx

2
�� I + lyLy

2
�

��
e
� I + Ae

2
�� ⇑ � � �0�b. �25�

These four states are equal-weight �in absolute value� super-
position of all possible multiloop configurations, produced
by the Ae operators as in Fig. 9, as well as the Lx and Ly

operators, as illustrated in Fig. 11 for Lx.
Let us note that the preceding construction relies on the

�⇑ � state and the fact that it is an eigenstate of the Bm’s, etc.
However, one could also have started with a state �⇒ � where
all spins point in the x direction, which is an eigenstate of the
Ae’s, and then follow a similar route.

3. Construction of excited states

We now have to see how to construct excited states, i.e.,
states containing vortices �e or m� but still no quasiparticle.
Constructing a state with some Bm’s being minus one �“mag-
netic vortices”� is easy once one has noticed that si

x anticom-
mutes with two Bm’s and thus changes their values to their
opposite. Since si

x commutes with all Ae’s, as well as with Lx

and Ly when i does not belong to the corresponding con-
tours, si

x�	wp=1
 , lx , ly�0 is an eigenstate of the effective
Hamiltonian, with two vortices living on the plaquettes
touching the bond to which i belongs. �Note that since si

x also
anticommutes with Lx and Ly when i belongs to the corre-
sponding contours, one should use a string of sj

x going
around the torus without crossing Lx and Ly instead of si

x.�
The corresponding state is again an equal-weight �in absolute
value� superposition of states, but now with all possible open
strings joining the created vortices, as well as all possible
closed loops. This is illustrated in Fig. 12.

Creating “electric” vortices is easy since one can replace
�e�

I+Ae

2 � in Eq. �25� by �e�
I+aeAe

2 �, with ae= �1, respecting
the constraint �eae=1 �see Eq. �19��. Such a change can also
be obtained via the action of si

z operators. Indeed, each si
z

operator anticommutes with two Ae’s and thus changes their
values to their opposite. The fluctuation of the strings in-
duced by si

z operators is however hard to see with the con-
struction we have given, which relies on the reference state
�⇑ �. To see this, one should construct states from the refer-
ence state �⇒ � where all spins point in the x direction and

FIG. 9. �Color online� Two of the states entering the equal-
weight superposition in Eq. �24�. Crosses on the sites indicate a spin
flip with respect to the reference state �⇑ �, where all spins point
upward �the Ae operators are still pictured by thick crosses at the
vertices�. The loops, in dotted lines, are obtained by joining the
flipped spins.

y

−y y

−y

Lx

−y y

−y y

Ly

FIG. 10. �Color online� The two loop operators Lx and Ly and
their contours in yellow �lightest gray� thick lines, corresponding to
Cb and Cc in Fig. 6. As in the latter figure, but for s spins instead of
� spins, y means sy, etc. In the 0-QP sector, ȳ= �−1�b†bsy is the same
as y.

FIG. 11. �Color online� Two of the states entering the equal-
weight �in absolute value� superposition in Eq. �25�, involving the
Lx loop operator. Graphical conventions are the same as in Figs. 9
and 10.
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then use projectors involving Bm’s instead of Ae’s. This is not
useful for our purpose so we let the interested reader doing it
on his own.

4. Statistics of vortices

For completeness, let us now show that “magnetic” and
“electric” vortices behave as semions with respect to each
other. This is done by first creating a pair of magnetic vorti-
ces, then a pair of electric vortices, and finally by moving
one of the magnetic vortices around one of the electric vor-
tices as shown in Fig. 13 �one could also do the contrary, but
then one should work with the reference state �⇒ � to see
things more easily�. With the notations of this figure �see also
its caption�, let us consider the state ��=ZX�	wp=1
 , lx , ly�0
with two e and m vortices. Then the repeated application of
spin flips along the loop X� �in any direction� moves the
downmost m vortex around the leftmost e vortex. The result-
ing state is X���. But as Z and X� have one �and only one�
common site, they anticommute, whereas X and X� commute
so that X���=−ZXX��	wp=1
 , lx , ly�0. Now, X� which is a
product of si

x operators forming a closed loop is nothing but
a product of Ae’s operators �the ones enclosed in the loop�.
As �	wp=1
 , lx , ly�0 is an eigenstate of the Ae’s with eigen-

value one, we finally obtain that X���=−��: braiding a
magnetic vortex around an electric vortex yields a nontrivial
phase of � �−1=ei��, which proves the semionic statistics.

Let us mention that the magnetic vortices behave as
bosons among themselves and so do the electric vortices.
This is easily seen by noticing that creating and moving m
vortices, for example, only requires sx operators, which all
commute with one another. To end this discussion about the
statistics of vortices, let us also remark that a compound
object made of an electric and a magnetic vortex is a fermion
�see Ref. 5�.

VI. EFFECTIVE HAMILTONIAN IN THE 1-QP SUBSPACE

A. Form of the Hamiltonian

The spectrum we obtained in the 0-QP subspace gives the
lowest eigenenergies for each configuration of the Wp’s. In
this section, we explain how to compute the high-energy
spectrum for states with one quasiparticle, for each Wp’s con-
figuration, and how to build the associated eigenstates. This
is achieved by diagonalizing Heff in the 1-QP subspace
�whose dimension is d1=N2N �see the end of Sec. IV��. In
this subspace, the effective Hamiltonian �18� reads

Heff�q=1 = E0 + � − �
	p1,. . .,pn


Cp1,. . .,pn
Wp1

¯ Wpn

− �
	j1,. . .,jn


Dj1,. . .,jn
Sj1,. . .,jn

bjn
† bj1

, �26�

where the second sum is performed over all non-self-
retracing paths of length n starting at site j1 and ending at site
jn, with possibly jn= j1 when working at order 4 or higher.
This is the reason why we give the expansion up to this order
but we would like to emphasize that obtaining orders up to
10 for Heff �q=1 is of the same complexity as for Heff �q=0.
Self-retracing paths are renormalizing the chemical potential
�. Note that a hopping process of one quasiparticle around a
loop is nothing but the product of the Wp’s enclosed in the
loop, as can be easily checked. This explains why at order 4,
one obtains some terms proportional to bi

†biWp, where the
plaquette p shares site i �see Appendix D�.

From now on �q�1� the phase factors appearing in the
Wp’s �see Eq. �14�� must be taken into account. The operators
S have a structure similar to that of the Wp’s, except that they
are open string operators. They involve � j

� as well as phase

factors �−1�bj
†bj as follows:

Sj1,. . .,jn
= �j1,. . .,jn

T jn−1

jn
¯ T j1

j2, �27�

where the �j1,. . .,jn
are phase factors which reduce to the iden-

tity in the 1-QP subspace and will be discussed later on �see
Sec. VII�. The two-site T i

j operators are built from the same
� j

� operators as the hoppings t i
j, namely,

T i
i+n1 = � i+n1

x = �T i+n1

i �†, �28�

T i
i+n2 = − i� i+n2

y � i
z = �T i+n2

i �†. �29�

Note that in the 1-QP subspace, one can also write the hop-
ping term of the Hamiltonian as13

m

m

m

m

FIG. 12. �Color online� Two of the states entering the equal-
weight �in absolute value� superposition for the state having two
magnetic vortices. The latter are represented with little gray squares
marked with the letter m and are linked with a string of spin flips
�blue �dark gray� thick line�. The other graphical conventions are
the same as in Fig. 9.

ZX X �

m
e

m

m
ee

m

e

FIG. 13. �Color online� Illustration of operators involved in the
braiding of a magnetic vortex around an electric vortex. X is the
product �isi

x for i belonging to the blue �dark gray� thick path link-
ing the two m vortices �orthogonal to bonds�. Z is the product �isi

z

for i belonging to the green �light gray� thick path linking the two e
vortices �drawn on the bonds�. X� is the product �isi

x for i belonging
to the dashed loop around the leftmost e vortex and is also equal to
a product of the Ae operators encircled by the loop �denoted as thick
crosses�.
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Sj1,. . .,jn
bjn

† bj1
�q=1 = t jn−1

jn
¯ t j1

j2. �30�

B. Construction of a 1-QP basis

As can be seen when looking at the form of the hopping
operators, bosonic and spin degrees of freedom are coupled
so that one has to tackle a polaronlike problem. However, we
shall now show that since all hopping operators t i

j commute
with all Wp’s as well as with all loop operators L, the 1-QP
problem is equivalent to that of one-particle hopping in a
static magnetic field.

As a first step, we build a basis of the 1-QP subspace. We
denote by �	wp
 , lx , ly�0 a state of the 0-QP subspace, which is
an eigenstate of the Wp’s and of Lx and Ly, and built as
explained in Sec. V B. We choose as the origin O the site we
have already denoted with a large �magenta� filled circle �see
Figs. 2 and 6, as well as Fig. 14�b��. Let us then consider the
state �	wp�
 , lx , ly ;O�1=bO

† �	wp
 , lx , ly�0 belonging to the 1-QP
subspace and with 1-QP at the origin. From formula �14�, it
is clear that adding a particle at the origin changes the value
of two plaquettes, as illustrated in Fig. 14�a� for the action of
bO

† on the ground state, which is the reason why we made a
distinction between wp and wp�. Note that all this is perfectly
consistent with Eq. �19�, as well as with the conclusion of
Ref. 42. Indeed, in this paper, Levin and Wen42 showed that
fermions are always created in pairs, and this is the case here
since a bound object of an electric vortex and a magnetic
vortex is a fermion �see Sec. V B�, and our quasiparticles
will turn out to be fermions �see Sec. VII�.

Other states �	wp�
 , lx , ly ; i�1 with a particle at site i are
obtained by applying an operator SO,. . .,ibi

†bO onto
�	wp�
 , lx , ly ;O�1 in order to make the particle hop, without
affecting the conserved Z2 quantities. Note that

SO,. . .,ibi
†bO�	wp�
,l

x,ly ;O�1 = SO,. . .,ibi
†�	wp
,lx,ly�0. �31�

However, we still need a convention for the path to be
taken �which will amount to choose a gauge for the magnetic
field the particles are hopping in� to obtain a well-defined
basis. The path from O to i is taken to be first in the n1
direction as much as needed, then in the n2 direction. For
example, in Fig. 14�b�, i=3n1+2n2 and the S operator is

depicted as oriented thick �cyan� line in this figure, with first
three move in direction n1 and then two move in direction
n2.

C. Hamiltonian in the 1-QP basis

Let us now consider the effective Hamiltonian at order 1,
for which the hopping part is nothing but T0, and study its
action on a state �	wp
 , lx , ly ; i�1. From the way the states have
been built, it is obvious that t i

i+n2�	wp
 , lx , ly ; i�1
= �	wp
 , lx , ly ; i+n2�1, and for the same reason and the fact
that T i

j is unitary, t i
i−n2�	wp
 , lx , ly ; i�1= �	wp
 , lx , ly ; i−n2�1. We

then turn to the hopping term t i
i+n1 and study its action on the

state �	wp
 , lx , ly ; i�1. In other words, we wish to compute the
matrix element,

Ai
i+n1 = 1	wp
,lx,ly ;i + n1�t i

i+n1�	wp
,lx,ly ;i�1. �32�

All needed states are represented in Fig. 15: �	wp
 , lx , ly ; i�1 in
�a�, t i

i+n1�	wp
 , lx , ly ; i�1 in �b�, and �	wp
 , lx , ly ; i+n1�1 in �c�.
Using the notations of Fig. 15 �Sa is the oriented product of
spin operators T i

j on the contour shown in �a�, starting at the
origin, the same for Sb and Sc, but for Sd the product starts
and ends at the particle’s position�, it is easy to see that
Sdt i

i+n1�	wp
 , lx , ly ; i�1= �	wp
 , lx , ly ; i+n1�1. Then, using the
fact that Sd

2= I,

Ai
i+n1 = 1	wp
,lx,ly ;i + n1� Sd �	wp
,lx,ly ;i + n1�1. �33�

Furthermore a calculation on Pauli matrices shows that the
action of Sd on the state �	wp
 , lx , ly ; i+n1�1 is the same as the
product of the plaquette operators encircled by the closed
contour of Sd, which on the example of Fig. 15 reads
Wp1

Wp2
Wp3

. We finally obtain

Ai
i+n1 = �

p�Ei,i+n1

wp, �34�

where the product has to be taken over all encircled
plaquettes Ei,i+n1

as illustrated on a particular example in Fig.
15. The case of a hopping in the −n1 direction can of course
be deduced from the above matrix elements by Hermitian
conjugation.

O O

i

(a) (b)

e

m m

e

FIG. 14. �Color online� Illustration of states of the 1-QP basis,
built from the ground state. �a� The action of bO

† is to create a
particle at site O �large black filled circle� as well as to create a pair
of e and m vortices. The action of the string operator S represented
with an oriented thick �cyan� line �a� on the state, then yields the
state with the same vortices �b� but a particle at site i. We do not
bicolor the lattice in cyan �gray� and white anymore so that the
figures are easier to read.
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FIG. 15. �Color online� ��a�–�c�� States and �d� contour needed
to compute the matrix element �Eq. �32�� �see text�.
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For some hopping processes, the matrix element not only
involves a product of wp’s but also a loop operator around
the torus. This is illustrated in Fig. 16 for a hopping in the n2
direction, starting from site i= ixn1+ �2p−1�n2 �ix=2 and
p=2 in the figure�. In this case, one has Sd=Lix

y �i.e., the loop
operator in the y direction, around the torus, going through
the sites i= ixn1+ pn2, where p takes all possible values� so
that

Ai
i+n2 = 1	wp
,lx,ly ;i�t i

i+n2�	wp
,lx,ly ;i�1 = lix
y . �35�

As explained in Secs. II and III the value of lix
y is determined

from the one of ly = l1
y and from the value of the plaquettes in

between these two loop operators.
All the above examples lead to the following conclusion.

The matrix elements of the effective Hamiltonian at lowest
order, in the 1-QP subspace, are the same as what one would
obtain for a particle with hopping amplitudes −Jx and −Jy in
the n1 and n2 directions of the square lattice in a magnetic
field whose �reduced� fluxes in plaquettes or cycles around
the torus are � /�0=0 or � /�0=1 /2 �where �0 is the flux
quantum�. This comes from the fact that, for example, hop-
ping around a plaquette p gives a phase factor 1 for the two
hoppings in the �n2 directions and an overall wp for the
hoppings in the �n1 directions. The overall contribution is
then wp, which takes value wp=exp�2i�� /�0�. This analysis
can be extended to the case of hoppings of the kind repre-
sented in Fig. 16 where the PBCs play a role.

When tackling higher-order corrections, hoppings become
longer ranged as seen in Eq. �26�, but the above consider-
ations still apply because of Eq. �30�. It is then easy to com-
pute the 1-QP spectrum for a given map of the Z2 conserved
quantities. As already explained, when the map does not pos-
sess translational invariance, one can only compute the spec-
trum numerically. When the wp’s are translationally invari-
ant, an analytic solution is available, and for example, in the
vortex-free subspace, the dispersion relation obtained at or-
der 2 �see Appendix D� is

Efree�kx,ky� = 1 − 2�Jx cos�kx� + Jy cos�ky��

+ 2�Jx sin�kx� + Jy sin�ky��2, �36�

where the wave vector �kx ,ky� belongs to �−� ,��� �−� ,��.
The gap in this sector is then obtained by minimizing Efree,
which yields 
free=1−2�Jx+Jy�. Note that, in this case, the
perturbative result at order 1 coincides with the nonperturba-
tive result obtained by Kitaev7 �see also Sec. VIII� and one
recovers the transition point at Jx+Jy =1 /2=Jz.

Results for other sectors �vortex full or one vortex every
two plaquettes� can also be obtained. We mainly used them
to check the validity of the coefficients we computed pertur-
batively, as explained in Sec. VIII.

As a final remark about the 1-QP subspace, let us mention
a difference with what is obtained when using exact fermi-
onization methods. With these methods, the low-energy sub-
space already contains many fermions, and one then consid-
ers fermionic excitations on top of this complicated vacuum
to reach high-energy states. In our approach, the low-energy
states are really empty of fermions and the excitations are
only made of one particle, which can thus be qualified of
Landau quasiparticle.

VII. EFFECTIVE HAMILTONIAN IN THE (q�2)-QP
SUBSPACE

Let us now turn to multiparticle states with the aim of
showing how the Fermi statistics can be recovered from
hard-core bosons with a string of spin and phase operators.
We shall not give many details here since our approach be-
comes cumbersome when studying multiparticle states and
because one knows from exact solutions that one has to re-
cover free fermions.

A. Phase factors

To obtain Fermi statistics, the phase factors appearing in
the string operators S �see Eq. �18�� are of utmost impor-
tance. These factors do neither appear at the end sites of the
string operators S �so in particular not at all for nearest-
neighbor hoppings, which are simply the t i

j operators of Eq.
�13�� nor at points of turning back but only at intermediate
sites between two truly different other sites. The six possi-
bilities are shown in Fig. 17, where the phase factors occur
only for the three topmost hoppings �phase factors for hop-
pings not represented in the figure can be inferred from Her-
mitian conjugation and Eq. �28��. In the figure, oriented thick
�cyan� lines represent the string operators S, and the sites j2
marked with a large dot are the ones involving a phase factor

�−1�bj2
† bj2. As an example, the string operator associated to a

three-site hopping as the one shown top left in Fig. 17 reads

Sj,j+n1,j+2n1
= �− 1�bj+n1

† bj+n1T j+n1

j+2n1T j
j+n1. �37�

In fact, in S. . .,j1,j2,j3,. . ., a phase factor appears at the interme-
diate site j2 if T j1

j2 and T j2
j3 commute and does not appear if

they anticommute.

B. Fermionic creation operators

Rigorously, it is impossible to introduce creation or anni-
hilation operators for single fermions because fermions

i

i
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i
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FIG. 16. �Color online� ��a�–�c�� States and �d� contour needed
to compute the matrix element of a hopping in the n2 direction
when site i is “one site away from the edge” of the dashed �ma-
genta� square and �d� thus involving a loop operator �see text for
details�.
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should always be created or annihilated in pairs. In fact, after
choosing a site O as an origin and after choosing a reference
path from site O to site i �as was done in Sec. VI�, the
operator �running on this reference path� ci

†�SO,. . .,i
ref bi

† can be
considered as a fermionic creation operator at site i once the
origin O has been sent to infinity �using the same trick as
when constructing a Dirac monopole in electrodynamics�. It
should be clear from arguments similar to those of Sec. VI
that such an operator creates a high-energy �spinless� fer-
mion at site i but also creates �or destroys if there is already
one� one low-energy fermion made of two vortices, top and
right of site O, as in Fig. 14. It however commutes with all
other Wp operators, except with these two. The fermionic
anticommutation relations between fermion operators at sites
i and j can be checked by exhausting all possible crossings of
two reference paths O , . . . , i and O , . . . , j.

C. Multiparticle basis and effective Hamiltonian

From there on, one can construct a multiparticle basis of
the Fock space, as was done for the one-particle basis, by
successively creating fermions at some sites �after having
decided for an ordering of these sites�. It can then be shown,
as was done in the 1-QP subspace, that the Hamiltonian is
nothing but a hopping Hamiltonian of free fermions in a
magnetic field, whose flux per plaquette is zero or half the
flux quantum �wp= �1�. The phase factors, apart from en-
suring proper Fermi statistics, also yield the correct expres-
sions for the Wp’s or product of Wp’s, which involve both �’s
and phase factors and which appear for hoppings around
closed paths.

D. Alternative picture

As was suggested by Levin and Wen in Ref. 42, the sta-
tistics of the effective quasiparticles can be probed with a
simple argument. It relies on exchanging two of these quasi-
particles by using hoppings from the Hamiltonian only and
doing so in such a way that a hopping on a bond between
two sites as occurred exactly once in each direction in order

to capture phases coming from the statistics only �and not,
e.g., from a magnetic Aharonov-Bohm-type phase�.

Let us, thus, consider the exchange process of two par-
ticles initially sitting at sites j and l �no other particle is
present�, as depicted in Fig. 18 and whose corresponding
operator sequence is �using only hopping operators arising at
lowest order�

t i
jt k

i t i
lt j

it i
kt l

i = − 1, �38�

or, equivalently, t j
it i

kt l
i=−t l

it i
kt j

i. The sign in the latter identity
confirms that the quasiparticles made of a hard-core boson
and an effective spin-1/2 obey fermionic statistics.

VIII. SIMPLE CHECKS FROM SIMPLE VORTEX
CONFIGURATIONS

As shown by Kitaev,7 the spectrum of Hamiltonian �1�
can be computed exactly by mapping the spin system onto
free Majorana fermions. The main drawback of this mapping
is that one has, first, to work in a fixed vortex sector and, in
a second step, perform the symmetrization procedure involv-
ing all equivalent gauge sectors. An alternative route9,11,12

consists in using the Jordan-Wigner transformation, which
maps the problem onto free spinless fermions with p-wave
pairing. However, in both approaches and as is often the
case, only periodic configurations allow one to obtain ana-
lytical expressions of the spectrum. In the following, we use
Kitaev’s approach6,7 �Majorana fermions� to compute the
spectrum in several simple periodic configurations character-
ized by a filling factor �= No. of vortex

No. of plaquette .
Actually, diagonalizing the Majorana fermion Hamil-

tonian on this honeycomb lattice7 is completely equivalent to
analyzing the problem of a free particle on this lattice in a
transverse magnetic field43 with a flux per plaquette which
can take only two values corresponding to wp= �1 �see Ap-
pendix F for details�. The ground-state energy is then ob-
tained by filling all levels with negative energy, which
amounts in a bipartite lattice for which the spectrum is sym-
metric, to consider half filling.

For the three cases considered here, we compute the exact
spectrum �still assuming Jz�Jx , Jy �0�. Then, we perform
the perturbative expansion of the ground-state energy up to

FIG. 17. �Color online� Illustration of the phase factors appear-
ing at site j2 in the string operators S. . .,j1,j2,j3,. . .. The phase factors

�−1�bj2
† bj2 are denoted as large �cyan� dots and are only involved in

the three top processes, which are, from left to right,
S. . .,j,j+n1,j+2n1,. . ., S. . .,j,j+n2,j+n1+n2,. . ., and S. . .,j,j−n2,j+n1−n2,. . ..
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FIG. 18. �Color online� Illustration of the exchange of two par-
ticles discussed in the text for j= i+n2, k= i+n1, and l= i−n2.
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order 10. This provides some simple checks of the results
given in Sec. V.

A. Vortex-free configuration �=0

This configuration defined by wp= +1 for all p’s is of
special interest since in the thermodynamical limit, the
ground state of H lies in this sector. This is a direct conse-
quence of Lieb’s theorem44 for flux phases. The spectrum, in
this sector, is simply obtained since it is equivalent to com-
pute the spectrum of a free particle in zero field. In the sys-
tem being periodic with two sites per unit cell �see Fig. 1�,
the single-particle spectrum consists of two bands given by
the roots of the following characteristic polynomial:

P�=0��� = �2 − f�q�2, �39�

where for all q in the reciprocal lattice,

f�q�2 = 4	Jx
2 + Jy

2 + Jz
2 + 2�JxJy cos�q · �n1 − n2��

+ JyJz cos�q · n2� + JxJz cos�q · n1��
 . �40�

The ground-state energy per plaquette is thus given, in the
thermodynamical limit, by

e0
�=0 = −

1

8�2�
−�

�

dqx�
−�

�

dqy�f�q�� . �41�

As already found by Kitaev,6,7 at the isotropic point
Jx=Jy =Jz=1, one has e0

�=0�−1.5746.
The gap is given by the minimum, in modulus, of P�=0’s

roots, i.e., minq�f�q��. Thus, one obtains


�=0 = 2�Jz − Jx − Jy� . �42�

Setting Jz=1 /2 and considering the perturbative limit
Jz�Jx ,Jy, one obtains the following expansion for the
ground-state energy at order 10:

e0
�=0 = −

1

2
− J2 −

3J4

4
−

5J6

2
−

875J8

64
−

3087J10

32
. �43�

For simplicity, we have set here Jx=Jy =J. This result can be
easily recovered by setting wp= +1 for all p’s in Eq. �21� and
using the coefficients given in Appendix C. One can also
check directly the one-particle spectrum by expanding f�q�
in the same limit and by comparing it with the one-particle
spectrum in the vortex-free sector obtained in Sec. VI.

B. Vortex-full configuration �=1

The vortex-full sector is defined by wp=−1 for all p’s. In
the “particle in a field” language, this problem corresponds
to a magnetic flux per plaquette, which is half a flux quan-
tum. With the gauge choice shown in Fig. 19, the system is
periodic with four sites per unit cell. The single-particle
spectrum, thus, consists of four bands given by the roots of
the characteristic polynomial,

P�=1��� = �4 − 8�2�Jx
2 + Jy

2 + Jz
2� + 16g�q�2, �44�

where for all q in the reciprocal lattice

g�q�2 = Jx
4 + Jy

4 + Jz
4 − 2	Jx

2Jy
2 cos�2q · n1�

+ Jy
2Jz

2 cos�q · �n1 − n2�� − Jx
2Jz

2 cos�q · �n1 + n2��
 .

�45�

The vectors n1= �1,0� and n2= �0,1� are defined in Fig. 19.
The ground-state energy per plaquette is given, in the ther-
modynamical limit, by

e0
�=1 = −

�2

8�2�
−�

�

dqx�
−�

�

dqy
�Jx

2 + Jy
2 + Jz

2 + �g�q�� . �46�

Once again, for Jx=Jy =Jz=1, this expression gives
e0

�=1�−1.5077 in agreement with Kitaev’s results.7

The gap is again given by the minimum, in modulus, of
P�=1’s roots


�=1 = 2�Jz − �Jx
2 + Jy

2� , �47�

in agreement with results given in Ref. 8. As for �=0, setting
Jz=1 /2 and considering the perturbative limit Jz�Jx ,Jy, one
obtains the following expansion for the ground-state energy
at order 10:

e0
�=1 = −

1

2
− J2 +

J4

4
−

3J6

2
+

149J8

64
−

547J10

32
. �48�

For simplicity, we have also set here Jx=Jy =J. This result
can be easily recovered by setting wp=−1 for all p in Eq.
�21� and using the coefficients given in Appendix C.

C. Vortex-half configuration �=1 Õ2

Let us now consider the vortex-half configuration shown
in Fig. 20, which is made of alternating vortex-free and
vortex-full rows. With the gauge choice shown in this figure,
the system is periodic with eight sites per unit cell. The eight
bands of the single-particle spectrum are given from the
roots of the following characteristic polynomial:

FIG. 19. �Color online� A possible gauge choice realizing the
vortex-full lattice �=1. The thin �bold� links are associated to ujk

= +1 �ujk=−1�, where j belongs to the black sublattice and k to the
white one �see Appendix F�. The eigenvalue of the plaquette opera-
tor is then simply given by wp=��j,k��pujk.
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P�=1/2��� = �8 − 16�6�Jx
2 + Jy

2 + Jz
2� + 32�4�3�Jx

4 + Jy
4 + Jz

4�

+ 4�Jx
2Jy

2 + Jy
2Jz

2 + Jx
2Jz

2� − 2Jx
2Jy

2 cos�q · n1��

− 256�2�Jx
6 + Jy

6 + Jz
6 + �Jx

2 + Jy
2��Jy

2 + Jz
2��Jx

2 + Jz
2�

− 2Jx
2Jy

2�Jx
2 + Jy

2�cos�q · n1�� + 256	Jx
8 + Jy

8 + Jz
8

+ 4Jx
4Jy

4 − 4�Jx
2Jy

6 + Jx
6Jy

2�cos�q · n1�

+ 2Jx
2�Jx

2Jy
4 cos�2q · n1� − Jy

2Jz
4 cos�2q · n2��

+ 2Jz
4	Jx

4 cos�q · �n1 + 2n2��

+ Jy
4 cos�q · �n1 − 2n2��

 .

The vectors n1= �1,0� and n2= �0,1� are defined in Fig. 20.
Note that since the hexagonal lattice is bipartite, the single-
particle spectrum is even and, consequently, all characteristic
polynomials are functions of �2. Thus, even in this vortex-
half configuration, one can get analytical expressions for the
eight bands since, practically, one only has to find the roots
of a fourth-order polynomial.

At the isotropic point, one obtains the ground-state energy
per plaquette e0

�=1/2�−1.5227. The gap is given by the mini-
mum, in modulus, of P�=1/2’s roots,


�=1/2 = 2�Jz − �Jx
2 + Jy

2� . �49�

It is worth noting that the gap in this sector is exactly the
same as the one in the vortex-full sector 
�=1 �see Eq. �47��.

Expanding the negative roots of P�=1/2 at order 10 and
integrating them out as in the previous sector, one gets for
Jx=Jy =J,

e0
�=1/2 = −

1

2
− J2 −

J4

4
+

3J6

2
−

411J8

64
−

211J10

32
. �50�

Finally, one may also consider another vortex-half configu-
ration rotated as shown in Fig. 21. The corresponding char-
acteristic polynomial is straightforwardly obtained from
P�=1/2 by the permutation Jx→Jy, Jy→Jz, and Jz→Jx. How-
ever, since the perturbation is performed in the limit
Jz�Jx ,Jy it leads to a different expression for the expanded
ground-state energy. In this case, one gets for Jx=Jy =J,

e0
�=1/2 = −

1

2
− J2 −

J4

4
−

J6

4
+

109J8

64
+

59J10

16
. �51�

Once again, both expressions �50� and �51� can be recovered
from Eq. �21� using the coefficients given in Appendix C.

The various results obtained for �=0,1 ,1 /2 provide �par-
tial� checks of the coefficients given in Appendixes C and D
and show the power of the PCUTs to compute high-order
expansion for the spectrum. In Sec. IX, we shall show that
this method is also an efficient tool to tackle more complex
problems.

IX. OBSERVABLES

One of the advantages of the CUT method is that it allows
one to obtain the effective form of any observables and to
compute its matrix elements in the eigenbasis of the Hamil-
tonian. The aim of this section is twofold. First, we compute
perturbatively the spin-spin correlations and show that they
admit a plaquette-operator expansion similar to that of the
spectrum. The second part of this section is dedicated to the
most fundamental problem of local spin operations onto the
ground state. Following Ref. 16, we show that single-spin
operations create not only anyons but also fermions. We
compute the spectral weights of various states stemming
from such operations, and we also analyze the action of
string operations which allow for manipulation of anyons.
Finally, we give a procedure to derive the operators which
create anyons without fermions and show that they involve
tricky superpositions of multispin operators.

A. Spin-spin correlation functions

Hamiltonian �1� is invariant under the time-reversal sym-
metry since it is a quadratic function of the spin operators.
Thus, any expectation value of an odd number of spin opera-
tors vanishes �such as the magnetization �i

���. Note also that
the absence of odd cycles ensures that the eigenstates do not
break this symmetry.7,26,27

In addition, the only nonvanishing spin correlators are
those involving products of �i

��j
� on � dimers.12,17,18 In this

section, we focus on the spin-spin correlation functions and

FIG. 20. �Color online� A possible gauge choice realizing the
vortex-half lattice �=1 /2. Notations are the same as in Fig. 19. In
this configuration, vortices are localized in alternance on horizontal
rows.

FIG. 21. �Color online� Another possible gauge choice realizing
the vortex-half lattice �=1 /2. Notations are the same as in Fig. 19.
In this configuration, vortices are localized, in alternance, on diag-
onal bands.
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their expression in the 0-QP sector. More precisely, we con-
sider the following operators: Ci,j

��=�i
��j

�, where �i , j� is an �
dimer. To compute these quantities, we proceed in a way
similar to what we have already done to derive the effective
Hamiltonian:

�i� we express the observable in the ESB language;
�ii� we compute its effective form perturbatively as ex-

plained in Appendix B �see also Ref. 45 for a detailed dis-
cussion�; and

�iii� we project it out in the sector of interest.
Using the ESB form of the spin operators �Eq. �8��, we

straightforwardly achieve the first step mentioned above for
the three correlation functions,

�i,�
x �i+n1,�

x = �bi
† + bi�� i+n1

x �bi+n1

† + bi+n1
� , �52�

�i,�
y �i+n2,�

y = i� i
z�bi

† − bi�� i+n2

y �bi+n2

† + bi+n2
� , �53�

�i,�
z �i,�

z = 1 − 2bi
†bi = �− 1�bi

†bi. �54�

To avoid any ambiguity, we keep track of the type of sites ��

or �� but we are working, at this stage, on the effective
square lattice. Next, we turn to the second step using the
perturbative expansion described in Appendix B. In the
present case, we pushed the calculation up to order 6 and,
finally, we focus on the 0-QP sector.

As one expects, the effective form of the spin-spin corre-
lation function is similar to that of the effective Hamiltonian.
This is due to the fact that in the low-energy sector, Wp’s are
the only degrees of freedom. Thus, we obtain, an expansion
in terms of the plaquette operators,

Cij
���q=0 = a�� − �

	p1,. . .,pn

bp1,. . .,pn

�� Wp1
¯ Wpn

. �55�

The coefficients a�� and bp1,. . .,pn

�� are given in Appendix E up
to order 6. Here again, we can see that these correlation
functions involve interactions between connected or discon-
nected plaquettes.

As a simple check of our expression, one can easily com-
pute the nonperturbative correlation function in the vortex-
free and the vortex-full sectors, thanks to the Hellman-
Feynman theorem. Indeed, in these sectors, all sites are
equivalent so that one readily gets the expectation value,

Cij
���q=0�� = Cij

���q=0
� = −

�e0
�

�J�

�56�

for both cases �=0,1 for which the ground-state energies are
given in Eqs. �41� and �46�. As in Sec. VIII, the subscript �
indicates that we consider the ground state of the sector with
filling factor �=0,1. Then, expanding these expressions �be-
fore derivation� and setting Jz=1 /2 and for simplicity
Jx=Jy =J, one gets

Ci
zz�q=0

�=0 = 1 − 2J2 −
9J4

2
− 25J6, �57�

Cij
xx�q=0

�=0 = J +
3J3

2
+

15J5

2
= Cij

yy�q=0
�=0 �58�

for the vortex-free sector and

Ci
zz�q=0

�=1 = 1 − 2J2 +
3J4

2
− 15J6, �59�

Cij
xx�q=0

�=1 = J −
J3

2
+

9J5

2
= Cij

yy�q=0
�=1 �60�

for the vortex-full sector. As can be checked, these results
can be recovered using the coefficients given in Appendix E
and Eq. �55�. We emphasize that, as for the spectrum, our
expressions allow us to investigate arbitrary vortex configu-
rations such as sparse vortex ones, recently studied
numerically.14,23

B. Creation of anyons

Let us now analyze the action of a single-spin operation
onto the ground state, and following Ref. 16, let us focus on
�i,�

z . As for the correlation functions, one first has to write
this operator in the ESB formalism, which is, again, straight-
forward since �i,�

z =� i
z. Then, one computes its renormaliza-

tion under the unitary transformation U which “diagonalizes”
the Hamiltonian. Finally, one can compute any matrix ele-
ment of this observable between any eigenstates.

At order 0, the observable is not renormalized and one has
U†� i

zU=� i
z. When this operator acts onto the ground state

which is in the vortex-free sector, it thus simply flips the two
plaquettes as shown in Fig. 22. In other words, it creates two
anyons and nothing else.

At order 1, one gets

U†� i
zU = � i

z�1 + �Jxvi−n1

i + Jyvi−n2

i + H.c.�� , �61�

showing that things are more complex since pairs of particles
�fermions� are created. It means that, at this order, � i

z couples
the 0-QP subspace of the vortex-free sector with the two-
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FIG. 22. �Color online� Behavior of the spectral weights In
z for

fermion numbers n=0,2 ,4 as a function of the coupling J=Jx=Jy

for Jz=1 /2. Gray plaquettes in the insets show the positions p1
z and

p2
z at which the anyons are created under the action of � i

z.
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quasiparticle �2-QP� subspace of the two-vortex sector dis-
cussed above. To have a physical quantitative picture of such
processes, let us compute the spectral weights defined as

In
z = �

k
�	p1

z ,p2
z
,n,k�� i

z�0��2, �62�

where �	p
 ,n ,k� denotes the eigenstate of H in a sector given
by an anyon configuration wp=−1 and n denotes high-energy
quasiparticles with quantum numbers k. Here, the plaquettes
p1

z and p2
z are as indicated in the inset of Fig. 22. This quan-

tity measures the weight of all n-fermion contributions ob-
tained by the action of � i

z onto the ground state �0�, which
contains no fermions and no anyons. As it should be, these
spectral weights satisfy the sum rule �nIn

z =1. At order 6, one
gets

I0
z = 1 − �Jx

2 + Jy
2� −

3

2
�Jx

4 + Jy
4� − 4Jx

2Jy
2 −

7

2
�Jx

6 + Jy
6�

−
43

2
�Jx

2Jy
4 + Jx

4Jy
2� , �63�

I2
z = Jx

2 + Jy
2 +

3

2
�Jx

4 + Jy
4� + 4Jx

2Jy
2 +

7

2
�Jx

6 + Jy
6�

+
43

2
�Jx

2Jy
4 + Jx

4Jy
2� , �64�

which show the importance of the two-fermion states for
increasing couplings, as can be seen in Fig. 22. Note that the
sum rule is fulfilled here implying In�4

z =0 at order 6. Actu-
ally, one may consider representative curves in Fig. 22 as
almost converged since order 8 corrections would bring very
small corrections. To summarize, one must realize that local
spin operations onto the ground state create anyons �here
two� but also give rise to fermionic excitations whose weight
increases significantly with the perturbation.

C. Manipulation of anyons

Another important question concerns the manipulation of
the anyons, which, as shown above, may be created by local
spin operations. Such an issue is of special interest for ex-
periments aiming at braiding anyons.30 This topic has been
the subject of a recent controversy with Zhang et al.33,46 who
completely neglected the existence of fermions in this model.
Following Jiang et al.30 who proposed an ingenious protocol
to detect anyon statistics, we wish to compute the action of a
string operator onto the ground state.

For simplicity, we consider here the operator
S=�a=1,m�ia,�

z along a horizontal line of the original brick-
wall lattice �see Fig. 23 with m=3 for notations�. At order 0,
it is simple to see that S first creates two anyons and makes
one of them jump in the direction of the string so that, at the
end, one eventually has one anyon at plaquette 1, another
anyon at the plaquette m+1, and no fermion.

However, at higher orders, as previously, such an opera-
tion creates fermions. To quantify this phenomenon, we con-
sider the probability P= �	1,m+1
 ,0�S�0��2 to find the final
state in the lowest-energy state �no fermions� with anyons at

plaquettes 1 and �m+1�, which coincides with I0
z for m=1. In

Ref. 16, we computed this probability at order 2, but here we
go beyond and give the result at order 6,

P = 1 − m�Jx
2 + Jy

2� +
m�m − 4�

2
�Jx

4 + Jy
4� + �m2 − 8m + 3�Jx

2Jy
2

−
m�m2 − 12m + 32�

6
�Jx

6 + Jy
6�

+ �−
m3

2
+ 10m2 − 51m + 20��Jx

4Jy
2 + Jx

2Jy
4� . �65�

The main reason to perform this high-order calculation is
that the above expression pleads in favor of an exponentiated
form linear with m. Indeed, although we have no proof, we
conjecture that P can be recast into exp�A−mB� as suggested
in footnote 4 of Ref. 7. It is indeed striking to see that ex-
pression �65�, which is a polynomial of the variable m, can
be seen as the expansion of such a simple form with, at order
6,

A = 3Jx
2Jy

2 + 20�Jx
4Jy

2 + Jx
2Jy

4� , �66�

B = Jx
2 + Jy

2 + 8Jx
2Jy

2 + 2�Jx
4 + Jy

4� + 48�Jx
4Jy

2 + Jx
2Jy

4�

+
16

3
�Jx

6 + Jy
6� . �67�

Further, it is clear that P is bounded by 0 and 1 for any m,
which is clearly not the case if one considers Eq. �65�. Let us
also note that the fact that U†� i

zU is found to be proportional
to � i

z �see Eq. �61��, strengthen the idea of an exponential
form of this effective observable and hence for S.

We display the results at various order in Fig. 24 using
expanded form �65� and the exponential form. As can be
clearly seen, the exponential form seems to be well behaved.
In addition, the order 6 expansion of A and B seems to pro-
vide an almost converged result when put in the exponential.
Thus, we claim that one can use this form to obtain a very
accurate value of P, which is known to be of primer interest
for braiding experiments.16,30–32

D. Anyons without fermions

As discussed previously, local or string spin operations
create fermions. However, in experiments, one wishes to ma-
nipulate anyons without being spoiled by these fermions.30

In other words, the ideal operations would consist in exciting
plaquettes �only� while remaining in the ground state of the

1 2 43

σz
i1,• σz

i2,• σz
i3,•

FIG. 23. �Color online� Action, in the vortex-free sector, of the
string operator S=�i3,�

z �i2,�
z �i1,�

z . Each operator flips the two
plaquettes adjacent to the z dimer; it is attached to but also creates
fermionic excitations �not shown�.
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corresponding vortex sector. In this section, we shall show,
perturbatively, that it is possible to do so even if the form of
such operators is hard to implement in realistic devices.

As an example, let us determine the operator �i creating
two vortices at the left and right plaquettes of a given site i
�see inset of Fig. 22 �left��. This operator must be such that
�ieff

=U†�iU=� i
z, which indeed leads to I0

z =1. Note that this
procedure is the inverse of what is usually done with CUTs
since, here, we wish to compute the bare observable given
the effective observable instead of the opposite.

Let us assume that this operator has a perturbative expan-
sion, namely,

�i = �
k�N

�i
�k�, �68�

where �i
�k� contains all operators of order k and thus associ-

ated to Jx
l Jy

m �with l+m=k�. At order 0, operators are not
renormalized so that one obviously has �i

�0�=� i
z. The renor-

malization of �i under the unitary transformation U reads

�ieff
= �

k�N
�ieff

�k� = �
k�N

U†�i
�k�U = �

k�N
�
l�N

�ieff

�k�,�l�, �69�

where �ieff

�k�,�l� is of order �k+ l�. Since, at order 0, one has
�ieff

=� i
z, one must have, at each order r�0,

�
k�N

�
l�N

�ieff

�k�,�l� = 0, �70�

where the sum is restricted to values of indices such that
k+ l=r. At order 1, this leads to

�ieff

�0�,�1� + �ieff

�1�,�0� = 0. �71�

Using Eq. �61� and the fact that �ieff

�k�,�0�=�i
�k�, one then ob-

tains

�i
�1� = − �Jxvi−n1

i + Jyvi−n2

i + H.c.� . �72�

Using the inverse mapping of Eq. �8�,

� i
x = �i,�

x �i,�
x , �73�

� i
y = �i,�

y �i,�
x , �74�

� i
z = �i,�

z , �75�

bi
† =

1

2
��i,�

x − i�i,�
z �i,�

y � , �76�

one finally gets, in the original spin language and at order 1,

�i = �i
�0� + �i

�1� �77�

=�i,�
z +

1

2
�Jx��i−n1,�

z �i−n1,�
y �i,�

y − �i−n1,�
x �i,�

x �i,�
z �

+ Jy��i−n2,�
z �i−n2,�

x �i,�
x − �i−n2,�

y �i,�
y �i,�

z �� . �78�

This expression shows that to create anyons without fermi-
ons, one has to build a complex superposition of operators
with fine-tuned coefficients. At order 1 considered here, such
states require single and triple spin-flip operations but, of
course, higher-order corrections would involve higher-order
spin-flip processes. Such constraints make creation of anyons
without fermions via local operations difficult
experimentally.16

X. CONCLUSION AND PERSPECTIVES

We have analyzed perturbatively the gapped phase of the
Kitaev honeycomb model6,7 in the isolated-dimer limit using
the continuous unitary transformations. We have, thus, de-
rived the low-energy effective theory up to order 10, which
has been found to describe an interacting-anyon system. This
result has to be contrasted with the order 4 result which
predicts a free anyon system.7 We also showed that the ex-
citations in each vortex sector obey fermionic statistics.

In a second step, we focused on the action of local spin
operators onto the ground state and we have shown that they
generate both anyons and fermions. We also gave the form of
the operator which creates anyons without fermions. This
operator involves multispin operators which may be hard to
implement experimentally.

Of course, several questions remain open in this model.
As explained by Kitaev,6,7 there exists a gapless phase which

FIG. 24. �Color online� P as a function of Jx=Jy =J computed
for m=25. Top: nonresummed �bare� expression �65� at order 2 �red
�bottom��, 4 �green �top��, and 6 �blue �middle��. Bottom: exponen-
tiated form exp�A−mB� at order 2 �red �top��, 4 �green �middle��,
and 6 �blue �bottom��.
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is associated to non-Abelian anyons. The influence of a mag-
netic field in this phase is certainly one of the most challeng-
ing question and should reveal rich phenomena. Note that the
effect of a magnetic field in the toric code already gives rise
to a nontrivial phase diagram as recently discussed in Refs.
47 and 48.

Another interesting issue concerns the time evolution of
local excitations. Indeed, in Sec. IX C, we discussed the ef-
fect of a string operator onto the ground state but we always
considered static quantities. Although experimentally, suc-
cessive spin operations may be performed on “short” time
scales, it would be of primer interest to compute the spread-
ing of fermionic excitations during the braiding processes
proposed to detect anyons.30
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APPENDIX A: STRUCTURE OF THE EFFECTIVE
HAMILTONIAN

As we have seen in Sec. III, when setting Jz=1 /2, Hamil-
tonian �1� can be written as

H = −
N

2
+ Q + T0 + T+2 + T−2, �A1�

where N is the number of z dimers, Q is the particle-number
operator, T0 contains the pure hopping operators which does
not change the number of particles, and T+2 �T−2� creates
�annihilates� pairs of particles. The operators T0,�2 are pro-
portional to the small parameters from which the perturba-
tion theory is performed.

The idea of the present approach is to transform Hamil-
tonian �9� into an effective one which conserves the particle
number. Of course, in general, this cannot be achieved ex-
actly and, as often, one has to perform a perturbative expan-
sion. To achieve this goal, a very powerful tool is the con-
tinuous unitary transformation method.34 For the problem at
hand, Knetter and Uhrig39 developed a code which computes
the coefficients of this expansion at high orders.49 Practically,
one must keep in mind that at order 10, which is the maxi-
mum order considered in this paper, one already has more
than 104 terms. We refer the interested reader to Ref. 39 for
a detailed derivation and we give below, for illustration, the
results up to order 4.

The operators and corresponding coefficients are set in
Table I, together with the lowest number qmin of particles
such that the operator has, a priori, a nonzero action within
the q-particle subspace for q�qmin. qmin is found by requir-
ing that the number of particles in the system is always posi-
tive and by using the fact that T0 projects out zero-particle
states. Note that some terms may vanish for more subtle
reasons. For example, the third-order term T−2T0T+2 does not
act on the 0-QP states. Indeed, T+2 creates a 2-QP state; then
T0 makes one of the particle hops; and finally T−2 tries to

annihilate two particles, but cannot, since these are not near-
est neighbor anymore due to the hopping.

One can then directly write the effective Hamiltonian,

Heff = −
N

2
+ Q + �

i

ciOi, �A2�

where Oi is the ith element of the column “operator” of
Table I and ci is the associated coefficient, the order being
given by the first column. By construction, the effective
Hamiltonian conserves the particle number and the energy
states are ordered according to their quasiparticle number,
the ground state being in the 0-QP sector. Furthermore, since
�Heff ,Q�=0, one may also rewrite the effective Hamiltonian
in the following form:

Heff = �
q�N

Heff�q, �A3�

where Heff �q denotes the projection of Heff onto the q-QP
sector. Note that it is not the decoupling used in the CUT
community where usually one gathers all operators which
contain exactly q creation and q annihilation operators and,
thus, act on the q�-QP sector with q��q.

TABLE I. Operators appearing in Heff with its corresponding
coefficient up to order 4, together with the q-particle subspace they
start to act on.

Order Operator O Coefficient c qmin

1 T0 1 1

2 T−2T+2 −1 /2 0

2 T+2T−2 1/2 2

3 T−2T0T+2 1/4 0

3 T0T−2T+2 −1 /8 1

3 T−2T+2T0 −1 /8 1

3 T+2T−2T0 −1 /8 2

3 T0T+2T−2 −1 /8 2

3 T+2T0T−2 1/4 3

4 T−2T−2T+2T+2 −1 /16 0

4 T−2T0T0T+2 −1 /8 0

4 T−2T+2T−2T+2 1/8 0

4 T0T−2T0T+2 1/8 1

4 T0T0T−2T+2 −1 /32 1

4 T−2T0T+2T0 1/8 1

4 T0T−2T+2T0 −1 /16 1

4 T−2T+2T0T0 −1 /32 1

4 T+2T−2T0T0 1/32 2

4 T0T+2T−2T0 1/16 2

4 T0T0T+2T−2 1/32 2

4 T+2T−2T+2T−2 −1 /8 2

4 T+2T0T−2T0 −1 /8 3

4 T0T+2T0T−2 −1 /8 3

4 T+2T0T0T−2 1/8 3

4 T+2T+2T−2T−2 1/16 4
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Finally, one must analyze each sector defined by the num-
ber of quasiparticles and determine the action of each opera-
tor Oi in the corresponding subspace. This is the nontrivial
part of the job which depends on the problem under consid-
eration. Let us emphasize that if each operator only starts to
act in the qmin-QP sector, it has also, in general, a nontrivial
action on the q-QP sectors for q�qmin.

APPENDIX B: PERTURBATIVE EXPANSION OF
OBSERVABLES

In this appendix, we give the general perturbative expan-
sion of any observable � obtained with the CUTs using the
quasiparticle number-conserving generator. As is the case for
the Kitaev model,6,7 we suppose that the Hamiltonian of the
system can be cast in the following form:

H = Q + T−2 + T0 + T+2, �B1�

and it satisfies the hypothesis given after Eq. �16�. In this
case, the flow equations obtained from the CUT method can
be solved perturbatively,45 and the effective observable can
be written as

�eff = � + �
i

ciOi, �B2�

where Oi is the ith element of the column operator of Table II
and ci is the associated coefficient, the order being given by
the first column.

At order 6 considered in this paper for the correlation
functions, there are several thousands of terms to consider.
Once this effective form is derived, one then has to analyze it
in the quasiparticle sector of interest as done for the effective
Hamiltonian.

APPENDIX C: COEFFICIENTS OF THE PERTURBATIVE
EXPANSION OF THE HAMILTONIAN IN THE 0-QP

SECTOR

As explained in Sec. V, the effective Hamiltonian in the
0-QP sector schematically reads

Heff�q=0 = E0 − �
	p1,. . .,pn


Cp1,. . .,pn
Wp1

¯ Wpn
, �C1�

where 	p1 , . . . , pn
 denotes a set of n plaquettes and Wp are
conserved plaquette operators. The form of the effective
Hamiltonian is translationally invariant �of course the con-
figuration of the wp’s need not be� so that Cp1,. . .,pn

, in fact,
only depends on relative coordinates of the plaquettes, and
we will use �except for the one-plaquette coefficient� the no-

tation C̃p2−p1,. . .,pn−p1
=Cp1,. . .,pn

. Here, we give the perturbative

expansion up to order 10 of E0 and the C̃’s in the limiting
case Jx ,Jy �Jz. Setting Jz=1 /2, one gets the following re-
sults.

�i� Constant term,

E0

N
= −

1

2
−

Jx
2 + Jy

2

2
−

Jx
4 + Jy

4

8
−

Jx
6 + Jy

6

8
−

25

128
�Jx

8 + Jy
8�

+
9

32
Jx

4Jy
4 −

49

128
�Jx

10 + Jy
10� +

33

64
�Jx

6Jy
4 + Jx

4Jy
6� , �C2�

where N is the number of z dimmers.
�ii� One-plaquette term,

Cp =
1

2
Jx

2Jy
2 +

1

4
�Jx

4Jy
2 + Jx

2Jy
4� +

5

16
�Jx

6Jy
2 + Jx

2Jy
6� +

1

4
Jx

4Jy
4

+
35

64
�Jx

8Jy
2 + Jx

2Jy
8� −

59

32
�Jx

6Jy
4 + Jx

4Jy
6� .

�iii� Two-plaquette terms,

C̃n1
=

7

8
Jx

4Jy
2 −

15

16
Jx

4Jy
4 +

3

4
Jx

6Jy
2 +

77

64
Jx

8Jy
2 −

55

32
Jx

6Jy
4 −

297

128
Jx

4Jy
6,

C̃n2
=

7

8
Jx

2Jy
4 −

15

16
Jx

4Jy
4 +

3

4
Jx

2Jy
6 +

77

64
Jx

2Jy
8 −

55

32
Jx

4Jy
6 −

297

128
Jx

6Jy
4,

C̃n1+n2
=

33

8
Jx

4Jy
4,

TABLE II. Operators appearing in �eff with the corresponding
coefficient up to order 2.

Order Operator Coefficient

1 T−2� −1 /2

1 T+2� 1/2

1 �T−2 1/2

1 �T+2 −1 /2

2 T−2T−2� 1/8

2 T−2T0� 1/4

2 T−2T+2� −1 /8

2 T−2�T−2 −1 /4

2 T−2�T+2 1/4

2 T0T−2� −1 /4

2 T0T+2� −1 /4

2 T+2T−2� −1 /8

2 T+2T0� 1/4

2 T+2T+2� 1/8

2 T+2�T−2 1/4

2 T+2�T+2 −1 /4

2 �T−2T−2 1/8

2 �T−2T0 −1 /4

2 �T−2T+2 −1 /8

2 �T0T−2 1/4

2 �T0T+2 1/4

2 �T+2T−2 −1 /8

2 �T+2T0 −1 /4

2 �T+2T+2 1/8
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C̃n1−n2
= −

1

4
Jx

4Jy
4 −

3

32
�Jx

6Jy
4 + Jx

4Jy
6� ,

C̃2n1
= −

143

32
Jx

6Jy
4,

C̃2n2
= −

143

32
Jx

4Jy
6,

C̃2n1+n2
=

715

64
Jx

6Jy
4,

C̃2n1−n2
=

55

64
Jx

6Jy
4,

C̃n1+2n2
=

715

64
Jx

4Jy
6,

C̃−n1+2n2
=

55

64
Jx

4Jy
6.

�iv� Three-plaquette terms,

C̃n1,2n1
=

33

16
Jx

6Jy
2 −

143

32
Jx

6Jy
4 +

143

64
Jx

8Jy
2,

C̃n2,2n2
=

33

16
Jx

2Jy
6 −

143

32
Jx

4Jy
6 +

143

64
Jx

2Jy
8,

C̃n1,n1+n2
=

33

16
Jx

4Jy
4 −

143

128
�Jx

6Jy
4 + Jx

4Jy
6� ,

C̃n1,−n2
=

33

16
Jx

4Jy
4 −

143

128
�Jx

6Jy
4 + Jx

4Jy
6� ,

C̃n1,n1−n2
= −

9

16
Jx

4Jy
4 −

275

128
�Jx

6Jy
4 + Jx

4Jy
6� ,

C̃n1,n2
= −

9

16
Jx

4Jy
4 −

275

128
�Jx

6Jy
4 + Jx

4Jy
6� ,

C̃n1+n2,2n1+n2
=

715

64
Jx

6Jy
4,

C̃n1+n2,n1+2n2
=

715

64
Jx

4Jy
6,

C̃n1,2n1+n2
=

715

64
Jx

6Jy
4,

C̃n2,n1+2n2
=

715

64
Jx

4Jy
6,

C̃n1−n2,2n1−n2
= −

11

16
Jx

6Jy
4,

C̃n1−n2,n1−2n2
= −

11

16
Jx

4Jy
6,

C̃n1,2n1−n2
= −

11

16
Jx

6Jy
4,

C̃n2,n1−n2
= −

11

16
Jx

4Jy
6.

�v� Four-plaquette terms,

C̃n1,n2,n1+n2
=

33

16
Jx

4Jy
4,

C̃n1,n2,−n1+n2
=

55

128
Jx

6Jy
4,

C̃n1,n2,n1−n2
=

55

128
Jx

4Jy
6,

C̃n1,2n1,3n1
=

715

128
Jx

8Jy
2,

C̃n2,2n2,3n2
=

715

128
Jx

2Jy
8,

C̃n1,n1+n2,n1+2n2
=

715

128
Jx

4Jy
6,

C̃n2,n1+n2,2n1+n2
=

715

128
Jx

6Jy
4,

C̃n1,2n1,2n1+n2
=

715

128
Jx

6Jy
4,

C̃n2,2n2,n1+2n2
=

715

128
Jx

4Jy
6,

C̃n1,n1+n2,2n1+n2
=

715

128
Jx

6Jy
4,

C̃n2,n1+n2,n1+2n2
=

715

128
Jx

4Jy
6,

C̃n1,2n1,n2
= −

143

128
Jx

6Jy
4,

C̃n2,2n2,n1
= −

143

128
Jx

4Jy
6,

C̃n1,2n1,2n1−n2
= −

143

128
Jx

6Jy
4,

C̃n1,n1−n2,n1−2n2
= −

143

128
Jx

4Jy
6,
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C̃n1,n1+n2,2n1
= −

143

128
Jx

6Jy
4,

C̃n1,n1−n2,2n1
= −

143

128
Jx

6Jy
4,

C̃n1,n2,−n1
= −

143

128
Jx

4Jy
6,

C̃n1,n1+n2,n1−n2
= −

143

128
Jx

4Jy
6.

�vi� Five-plaquette terms,

C̃n1,2n1,n1+n2,2n1+n2
=

715

128
Jx

6Jy
4,

C̃n1,2n1,−n2,n1−n2
=

715

128
Jx

6Jy
4,

C̃n2,2n2,n1+n2,n1+2n2
=

715

128
Jx

4Jy
6,

C̃n2,2n2,−n1,−n1+n2
=

715

128
Jx

4Jy
6,

C̃n1,2n1,n2,n1+n2
= −

143

128
Jx

6Jy
4,

C̃n1,2n1,n1−n2,2n1−n2
= −

143

128
Jx

6Jy
4,

C̃n2,2n2,n1,n1+n2
= −

143

128
Jx

4Jy
6,

C̃n2,2n2,−n1+n2,−n1+2n2
= −

143

128
Jx

4Jy
6.

�vii� Six-plaquette terms,

C̃n1,2n1,n2,n1+n2,2n1+n2
=

715

128
Jx

6Jy
4,

C̃n2,2n2,n1,n1+n2,n1+2n2
=

715

128
Jx

4Jy
6.

As can be seen from these expansions, the number of
interacting plaquettes increases with the order of the pertur-
bation theory.

APPENDIX D: COEFFICIENTS OF THE PERTURBATIVE
EXPANSION OF THE HAMILTONIAN IN THE 1-QP

SECTOR

In the 1-QP sector, the effective Hamiltonian reads �see
Eqs. �26�–�30��

Heff�q=1 = Heff�q=0 + � − �
	j1,. . .,jn


Dj1,. . .,jn
t jn−1

jn . . . t j1
j2, �D1�

where the sum is performed over all non-self-retracing paths
of length n starting at site j1 and ending at site jn. The op-
erators t i

j are defined in Eqs. �10�–�13�. Since the D’s do not

depend on the initial site, we introduce D̃j2−j1,. . .,jn−jn−1
=Dj1,. . .,jn

. From the symmetries of the underlying lattice, it is
clear that we can limit the analysis to processes involving a
first jump in the direction +n1 or +n2.

We give below the perturbative expansion of � and the

D̃’s in the limiting case Jx ,Jy �Jz up to order 4 and set
Jz=1 /2. Note that one could reach order 10 as for the 0-QP
sector if needed. However, as explained in Sec. VI, it is
simpler, in this sector, to use directly the Majorana formal-
ism, which is nonperturbative and requires a comparable nu-
merical effort.

�i� Chemical potential,

� = 1 + Jx
2 + Jy

2 +
Jx

4 + Jy
4

4
. �D2�

�ii� One-hopping terms,

D̃n1
= Jx −

1

2
Jx

3 −
1

2
JxJy

2,

D̃n2
= Jy −

1

2
Jy

3 −
1

2
Jx

2Jy .

�iii� Two-hopping terms,

D̃n1,n1
=

1

2
Jx

2 −
5

8
Jx

2Jy
2 −

1

2
Jx

4,

D̃n1,n2
=

1

2
JxJy −

9

16
Jx

3Jy −
9

16
JxJy

3,

D̃n1,−n2
= −

1

2
JxJy ,

D̃n2,n2
=

1

2
Jy

2 −
5

8
Jx

2Jy
2 −

1

2
Jy

4,

D̃n2,n1
=

1

2
JxJy −

9

16
JxJy

3 −
9

16
Jx

3Jy ,

D̃n2,−n1
= −

1

2
JxJy .

�iv� Three-hopping terms,

D̃n1,n1,n1
=

1

2
Jx

3,

D̃n1,n1,n2
=

1

2
Jx

2Jy ,
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D̃n1,n1,−n2
= −

1

4
Jx

2Jy ,

D̃n1,n2,n1
=

1

2
Jx

2Jy ,

D̃n1,n2,n2
=

1

2
JxJy

2,

D̃n1,n2,−n1
= −

1

4
Jx

2Jy ,

D̃n1,−n2,n1
= 0,

D̃n1,−n2,−n2
= −

1

4
JxJy

2,

D̃n1,−n2,−n1
= −

1

4
Jx

2Jy ,

D̃n2,n2,n2
=

1

2
Jy

3,

D̃n2,n2,n1
=

1

2
JxJy

2,

D̃n2,n2,−n1
= −

1

4
JxJy

2,

D̃n2,n1,n2
=

1

2
JxJy

2,

D̃n2,n1,n1
=

1

2
Jx

2Jy ,

D̃n2,n1,−n2
= −

1

4
JxJy

2,

D̃n2,−n1,n2
= 0,

D̃n2,−n1,−n1
= −

1

4
Jx

2Jy ,

D̃n2,−n1,−n2
= −

1

4
JxJy

2.

�v� Four-hopping terms,

D̃n1,n1,n1,n1
=

5

8
Jx

4,

D̃n1,n1,n1,n2
=

5

8
Jx

3Jy ,

D̃n1,n1,n1,−n2
= −

3

16
Jx

3Jy ,

D̃n1,n1,n2,n1
=

5

8
Jx

3Jy ,

D̃n1,n1,n2,n2
=

5

8
Jx

2Jy
2,

D̃n1,n1,n2,−n1
= −

3

16
Jx

3Jy ,

D̃n1,n1,−n2,n1
= −

1

16
Jx

3Jy ,

D̃n1,n1,−n2,−n2
= −

1

4
Jx

2Jy
2,

D̃n1,n1,−n2,−n1
= −

1

4
Jx

3Jy ,

D̃n1,n2,n1,n1
=

5

8
Jx

3Jy ,

D̃n1,n2,n1,n2
=

5

8
Jx

2Jy
2,

D̃n1,n2,n1,−n2
= −

3

16
Jx

2Jy
2,

D̃n1,n2,n2,n1
=

5

8
Jx

2Jy
2,

D̃n1,n2,n2,n2
=

5

8
JxJy

3,

D̃n1,n2,n2,−n1
= −

3

16
Jx

2Jy
2,

D̃n1,n2,−n1,−n1
= −

1

4
Jx

3Jy ,

D̃n1,n2,−n1,n2
= −

1

16
Jx

2Jy
2,

D̃n1,−n2,n1,n1
= −

1

16
Jx

3Jy ,

D̃n1,−n2,n1,n2
= −

1

16
Jx

2Jy
2,

D̃n1,−n2,n1,−n2
=

1

8
Jx

2Jy
2,
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D̃n1,−n2,−n2,n1
= 0,

D̃n1,−n2,−n2,−n2
= −

3

16
JxJy

3,

D̃n1,−n2,−n2,−n1
= −

3

16
Jx

2Jy
2,

D̃n1,−n2,−n1,−n1
= −

3

16
Jx

3Jy ,

D̃n1,−n2,−n1,−n2
= −

3

16
Jx

2Jy
2,

D̃n2,n2,n2,n2
=

5

8
Jy

4,

D̃n2,n2,n2,n1
=

5

8
JxJy

3,

D̃n2,n2,n2,−n1
= −

3

16
JxJy

3,

D̃n2,n2,n1,n2
=

5

8
JxJy

3,

D̃n2,n2,n1,n1
=

5

8
Jx

2Jy
2,

D̃n2,n2,n1,−n2
= −

3

16
JxJy

3,

D̃n2,n2,−n1,n2
= −

1

16
JxJy

3,

D̃n2,n2,−n1,−n1
= −

1

4
Jx

2Jy
2,

D̃n2,n2,−n1,−n2
= −

1

4
JxJy

3,

D̃n2,n1,n2,n2
=

5

8
JxJy

3,

D̃n2,n1,n2,n1
=

5

8
Jx

2Jy
2,

D̃n2,n1,n2,−n1
= −

3

16
Jx

2Jy
2,

D̃n2,n1,n1,n2
=

5

8
Jx

2Jy
2,

D̃n2,n1,n1,n1
=

5

8
Jx

3Jy ,

D̃n2,n1,n1,−n2
= −

3

16
Jx

2Jy
2,

D̃n2,n1,−n2,−n2
= −

1

4
JxJy

3,

D̃n2,n1,−n2,n1
= −

1

16
Jy

2Jy
2,

D̃n2,−n1,n2,n2
= −

1

16
JxJy

3,

D̃n2,−n1,n2,n1
= −

1

16
Jx

2Jy
2,

D̃n2,−n1,n2,−n1
=

1

8
Jx

2Jy
2,

D̃n2,−n1,−n1,n2
= 0,

D̃n2,−n1,−n1,−n1
= −

3

16
Jx

3Jy ,

D̃n2,−n1,−n1,−n2
= −

3

16
Jx

2Jy
2,

D̃n2,−n1,−n2,−n2
= −

3

16
JxJy

3,

D̃n2,−n1,−n2,−n1
= −

3

16
Jx

2Jy
2.

Additionally, there are some terms corresponding to pro-
cesses where the particle hops one time around a plaquette.
Note that the plaquette involved can be covered clockwise or
counterclockwise but the product of t i

j leads exactly to the
same operator bi

†biWp,

D̃n1,−n2,−n1,n2
=

1

4
Jx

2Jy
2,

D̃n1,n2,−n1,−n2
= 0,

D̃n2,−n1,−n2,n1
=

1

4
Jx

2Jy
2,

D̃n2,n1,−n2,−n1
= 0.
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APPENDIX E: COEFFICIENTS OF THE SPIN-SPIN
CORRELATION FUNCTION IN THE 0-QP SECTOR

As discussed in Sec. IX A, the spin-spin correlation func-
tions Ci,j

��=�i
��j

� computed on any eigenstate of H are non-
vanishing only if �=� and if i and j belong to the same
dimer which is of � type. We give below the perturbative
expansion of these correlation functions in the 0-QP sector.

1. Coefficients of Ci
zz

In the perturbative approach we use, note that a z dimer in
the honeycomb lattice becomes a single site i in the effective
square lattice. As for the Hamiltonian in the 0-QP sector �see
Eq. �21��, we obtain an expansion which can be expressed
only in terms of the plaquette operators, namely,

Ci
zz�q=0 = azz − �

	p1,. . .,pn

bp1,. . .,pn

zz Wp1
¯ Wpn

. �E1�

Below, we give the results up to order 6 and we index a
plaquette p by a site i and indices u ,d , l ,r according to no-
tations given in Fig. 25.

�i� Constant term,

azz = 1 − �Jx
2 + Jy

2� −
3

4
�Jx

4 + Jy
4� −

5

4
�Jx

6 + Jy
6� .

�ii� One-plaquette terms,

b�i,u�
zz = −

5

4
Jx

2Jy
2,

b�i,d�
zz = −

5

4
Jx

2Jy
2,

b�i,l�
zz = −

1

4
Jx

2Jy
2 +

1

2
�Jx

2Jy
4 + Jx

4Jy
2� ,

b�i,r�
zz = −

1

4
Jx

2Jy
2 +

1

2
�Jx

2Jy
4 + Jx

4Jy
2� ,

b�i+2n1,l�
zz = −

21

8
Jx

4Jy
2,

b�i+2n2,r�
zz = −

21

8
Jx

2Jy
4,

b�i−2n1,r�
zz = −

21

8
Jx

4Jy
2,

b�i−2n2,l�
zz = −

21

8
Jx

2Jy
4,

b�i−2n1,u�
zz =

7

8
Jx

4Jy
2,

b�i+2n2,d�
zz =

7

8
Jx

2Jy
4,

b�i+2n1,d�
zz =

7

8
Jx

4Jy
2,

b�i−2n2,u�
zz =

7

8
Jx

2Jy
4. �E2�

�iii� Two-plaquette terms,

b�i,u�,�i+2n1,l�
zz = −

21

8
Jx

4Jy
2,

b�i,u�,�i+2n2,r�
zz = −

21

8
Jx

2Jy
4,

b�i,d�,�i−2n1,r�
zz = −

21

8
Jx

4Jy
2,

b�i,d�,�i−2n2,l�
zz = −

21

8
Jx

2Jy
4,

b�i,l�,�i−2n1,u�
zz = −

7

8
Jx

4Jy
2,

b�i,l�,�i+2n2,d�
zz = −

7

8
Jx

2Jy
4,

b�i,r�,�i+2n1,d�
zz = −

7

8
Jx

4Jy
2,

b�i,r�,�i−2n2,u�
zz = −

7

8
Jx

2Jy
4,

b�i,u�,�i,l�
zz = −

7

8
Jx

4Jy
2,

b�i,d�,�i,l�
zz = −

7

8
Jx

2Jy
4,

b�i,d�,�i,r�
zz = −

7

8
Jx

4Jy
2,

(i, d)

(i, u)

(i, l) (i, r)
i

FIG. 25. �Color online� Labeling of the plaquettes by a site
index �i� and a position u ,d , l ,r with respect to that site.
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b�i,u�,�i,r�
zz = −

7

8
Jx

2Jy
4.

2. Coefficients of Ci,j
xx

Contrary to z dimers, x dimers remain dimers perturba-
tively. Here again, one obtains an expansion in terms of
plaquettes for these observables, in the 0-QP sector, which
can be written as

Ci,i+n1

xx �q=0 = axx − �
	p1,. . .,pn


bp1,. . .,pn

xx Wp1
¯ Wpn

. �E3�

We give below the expansion of the coefficients up to
order 5 �only odd orders are nonvanishing�, and, as previ-
ously, we index a plaquette p by a site i and an index u ,d , l ,r
according to the notations given in Fig. 25. In the following
we consider a dimer located at �i , i+n1�.

�i� Constant term,

axx = Jx +
1

2
Jx

3 +
3

4
Jx

5.

�ii� One-plaquette terms,

b�i,u�
xx =

1

2
JxJy

2 −
1

2
Jx

3Jy
2 +

1

4
JxJy

4,

b�i,r�
xx =

1

2
JxJy

2 −
1

2
Jx

3Jy
2 +

1

4
JxJy

4,

b�i+2n1,l�
xx =

7

4
Jx

3Jy
2,

b�i,d�
xx =

7

4
Jx

3Jy
2,

b�i+2n1,d�
xx = −

3

4
Jx

3Jy
2,

b�i,l�
xx = −

3

4
Jx

3Jy
2.

�iii� Two-plaquette terms,

b�i,u�,�i+2n1,l�
xx =

7

8
Jx

3Jy
2,

b�i,u�,�i+2n2,r�
xx =

7

8
JxJy

4,

b�i,u�,�i,l�
xx =

7

8
Jx

3Jy
2,

b�i,r�,�i,d�
xx =

7

8
Jx

3Jy
2,

b�i,r�,�i−2n2,u�
xx =

7

8
JxJy

4,

b�i,r��i+2n1,d�
xx =

7

8
Jx

3Jy
2. �E4�

3. Coefficients of Ci,j
yy

The correlation functions Ci,j
yy are straightforwardly ob-

tained from Ci,j
xx by exchanging directions x and y as well as

Jx and Jy.

APPENDIX F: CORRESPONDENCE BETWEEN THE
MAJORANA FERMION SPECTRUM AND A

FREE-PARTICLE PROBLEM IN A MAGNETIC FIELD

As shown by Kitaev,7 the spin Hamiltonian �1� can be
mapped onto the following Majorana fermion Hamiltonian,

H =
i

4�
j,k

Ajkcjck, �F1�

where A is a skew-symmetric matrix of size 2N�2N �N
being the number of plaquette� and where the cj’s are the
�Hermitian� Majorana operators which obey cj

2=1 and
cjck=−ckcj if j�k. The sum is performed over all sites j and
k of the honeycomb �brick-wall� lattice and

Ajk = 2J�ujk �F2�

if the link �j ,k� is of � type and 0 otherwise. The ujk’s are
antisymmetric �ujk=−ukj� and take the values �1. These
numbers define the vortex configuration through
wp=��j,k��pujk, where j belongs to the black sublattice and k
to the white one �see Fig. 1�a��. We refer the interested reader
to Ref. 7 for details. In the very end, the whole spectrum of
H can be obtained once one knows the spectrum of iA, e.g.,
the ground-state energy per plaquette is given by

e0 = −
1

4N
Tr�iA� . �F3�

For a bipartite lattice such as the honeycomb lattice, we
shall now show that the spectrum of iA is the same as the
one-particle spectrum of the following Hamiltonian:

H� = −
1

2�
j,k

Ajk� �aj
†ak + H.c.� , �F4�

where aj
† �aj� are standard spinless fermion creation �annihi-

lation� operators. The Hamiltonian H� describes free spinless
fermions hopping in a honeycomb lattice in a magnetic field
with a flux per plaquette which equals zero �wp= +1� or half
a flux quantum �wp=−1�. The spectra of H� �with one fer-
mion� and of iA are identical provided

Ajk� = 2J�ujk� , �F5�

with ujk� = +ukj� . The choice of the ujk� is as previously dictated
by the flux configuration via wp=��j,k��pujk� , where, in this
case, the ujk� are not oriented but still take the value �1.

To show this, consider an eigenstate �� of the matrix iA
with energy E and let us denote  j = j �� its component on
site j. This state satisfies
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�
k

iAjkk = E j . �F6�

Since the honeycomb lattice is bipartite, we can always set
ujk=ujk� if j is a white site �and k black� and ujk=−ujk� if j is
a black site �and k white�. Then, one can easily check that the
state ���, defined by � j =− j if j is a black site and
� j =−i j if it is a white site, satisfies

− �
k

Ajk� �k = E� j , �F7�

so that ��� is an eigenstate of H� with the energy E. This
shows that H� �with one particle� and iA are isospectral. We
insist on the fact that this correspondence only holds for a
bipartite lattice but is no longer true in the presence of odd
cycles.
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